Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Cells ; 11(21)2022 10 27.
Article in English | MEDLINE | ID: mdl-36359802

ABSTRACT

Human-relevant tests to predict developmental toxicity are urgently needed. A currently intensively studied approach makes use of differentiating human stem cells to measure chemically-induced deviations of the normal developmental program, as in a recent study based on cardiac differentiation (UKK2). Here, we (i) tested the performance of an assay modeling neuroepithelial differentiation (UKN1), and (ii) explored the benefit of combining assays (UKN1 and UKK2) that model different germ layers. Substance-induced cytotoxicity and genome-wide expression profiles of 23 teratogens and 16 non-teratogens at human-relevant concentrations were generated and used for statistical classification, resulting in accuracies of the UKN1 assay of 87-90%. A comparison to the UKK2 assay (accuracies of 90-92%) showed, in general, a high congruence in compound classification that may be explained by the fact that there was a high overlap of signaling pathways. Finally, the combination of both assays improved the prediction compared to each test alone, and reached accuracies of 92-95%. Although some compounds were misclassified by the individual tests, we conclude that UKN1 and UKK2 can be used for a reliable detection of teratogens in vitro, and that a combined analysis of tests that differentiate hiPSCs into different germ layers and cell types can even further improve the prediction of developmental toxicants.


Subject(s)
Teratogens , Toxicity Tests , Humans , Teratogens/toxicity , Cell Differentiation , Stem Cells , In Vitro Techniques
2.
Chem Res Toxicol ; 35(5): 760-773, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35416653

ABSTRACT

Despite the progress made in developmental toxicology, there is a great need for in vitro tests that identify developmental toxicants in relation to human oral doses and blood concentrations. In the present study, we established the hiPSC-based UKK2 in vitro test and analyzed genome-wide expression profiles of 23 known teratogens and 16 non-teratogens. Compounds were analyzed at the maximal plasma concentration (Cmax) and at 20-fold Cmax for a 24 h incubation period in three independent experiments. Based on the 1000 probe sets with the highest variance and including information on cytotoxicity, penalized logistic regression with leave-one-out cross-validation was used to classify the compounds as test-positive or test-negative, reaching an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively. Omitting the cytotoxicity information reduced the test performance to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74. A second method, which used the number of significantly deregulated probe sets to classify the compounds, resulted in a specificity of 1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83) were inferior compared to those of the logistic regression-based procedure. Finally, no increased performance was achieved when the high test concentrations (20-fold Cmax) were used, in comparison to testing within the realistic clinical range (1-fold Cmax). In conclusion, although further optimization is required, for example, by including additional readouts and cell systems that model different developmental processes, the UKK2-test in its present form can support the early discovery-phase detection of human developmental toxicants.


Subject(s)
Induced Pluripotent Stem Cells , Transcriptome , Hazardous Substances , Humans , In Vitro Techniques , Teratogens
4.
Arch Toxicol ; 95(5): 1703-1722, 2021 05.
Article in English | MEDLINE | ID: mdl-33713149

ABSTRACT

Methods to assess neuronal receptor functions are needed in toxicology and for drug development. Human-based test systems that allow studies on glutamate signalling are still scarce. To address this issue, we developed and characterized pluripotent stem cell (PSC)-based neural cultures capable of forming a functional network. Starting from a stably proliferating neuroepithelial stem cell (NESC) population, we generate "mixed cortical cultures" (MCC) within 24 days. Characterization by immunocytochemistry, gene expression profiling and functional tests (multi-electrode arrays) showed that MCC contain various functional neurotransmitter receptors, and in particular, the N-methyl-D-aspartate subtype of ionotropic glutamate receptors (NMDA-R). As this important receptor is found neither on conventional neural cell lines nor on most stem cell-derived neurons, we focused here on the characterization of rapid glutamate-triggered Ca2+ signalling. Changes of the intracellular free calcium ion concentration ([Ca2+]i) were measured by fluorescent imaging as the main endpoint, and a method to evaluate and quantify signals in hundreds of cells at the same time was developed. We observed responses to glutamate in the low µM range. MCC responded to kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and a subpopulation of 50% had functional NMDA-R. The receptor was modulated by Mg2+, Zn2+ and Pb2+ in the expected ways, and various toxicologically relevant agonists (quinolinic acid, ibotenic acid, domoic acid) triggered [Ca2+]i responses in MCC. Antagonists, such as phencyclidine, ketamine and dextromethorphan, were also readily identified. Thus, the MCC developed here may fill an important gap in the panel of test systems available to characterize the effects of chemicals on neurotransmitter receptors.


Subject(s)
N-Methylaspartate/metabolism , Receptors, Glutamate/metabolism , Animals , Calcium , Cells, Cultured , Excitatory Amino Acid Agonists , Glutamic Acid , Humans , Kainic Acid/analogs & derivatives , Neural Stem Cells , Neurons , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
5.
FEBS Lett ; 595(10): 1438-1453, 2021 05.
Article in English | MEDLINE | ID: mdl-33686684

ABSTRACT

The DEK oncoprotein regulates cellular chromatin function via a number of protein-protein interactions. However, the biological relevance of its unique pseudo-SAP/SAP-box domain, which transmits DNA modulating activities in vitro, remains largely speculative. As hypothesis-driven mutations failed to yield DNA-binding null (DBN) mutants, we combined random mutagenesis with the Bacterial Growth Inhibition Screen (BGIS) to overcome this bottleneck. Re-expression of a DEK-DBN mutant in newly established human DEK knockout cells failed to reduce the increase in nuclear size as compared to wild type, indicating roles for DEK-DNA interactions in cellular chromatin organization. Our results extend the functional roles of DEK in metazoan chromatin and highlight the predictive ability of recombinant protein toxicity in E. coli for unbiased studies of eukaryotic DNA modulating protein domains.


Subject(s)
Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , Escherichia coli/drug effects , Loss of Function Mutation , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Recombinant Proteins/toxicity , Bias , Cell Nucleus/drug effects , Cell Size/drug effects , Chromatin/chemistry , Chromatin/genetics , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/toxicity , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Expression Regulation, Bacterial/drug effects , Genome, Bacterial/drug effects , Genome, Bacterial/genetics , Humans , Mutagenesis , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Oncogene Proteins/chemistry , Oncogene Proteins/toxicity , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Fragments/toxicity , Poly-ADP-Ribose Binding Proteins/chemistry , Poly-ADP-Ribose Binding Proteins/toxicity , Protein Domains/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Toxicity Tests/methods
6.
ALTEX ; 38(1): 73-81, 2021.
Article in English | MEDLINE | ID: mdl-32591837

ABSTRACT

Microcystins (MC) are a group of cyanobacterial toxins that comprises MC-LF and other cyclic heptapeptides, best known as potent hepatotoxicants. Cell culture and epidemiological studies suggest that MC might also affect the nervous system when there is systemic exposure, e.g., via drinking water or food. We asked whether in vitro studies with human neurons could provide estimates on the neurotoxicity hazard of MC-LF. First, we used LUHMES neurons, a well-established test system for neurotoxicants and neuropathological processes. These central nervous system cells express OATP1A2, a presumed carrier of MC-LF, and we observed selective neurite toxicity in the µM range (EC20 = 3.3 µM ≈ 3.3 µg/mL). Transcriptome changes pointed towards attenuated cell maintenance and biosynthetic processes. Prolonged exposure for up to four days did not increase toxicity. As a second model, we used human dorsal root ganglia-like neurons. These peripheral nervous system cells represent parts of the nervous system not protected by the blood-brain barrier in humans. Toxicity was observed in a similar concentration range (EC20 = 7.4 µM). We conclude that MC-LF poses a potential neurotoxic hazard in humans. The adverse effect concentrations observed here were orders of magnitude higher than those presumed to be encountered after normal nutritional or environmental exposure. However, the low µM concentrations found to be toxic are close to levels that may be reached after very excessive algae supplement intake.


Subject(s)
Microcystins/toxicity , Neural Stem Cells/drug effects , Animal Testing Alternatives/methods , Cell Line , Humans , Toxicity Tests
8.
Nucleic Acids Res ; 48(22): 12577-12592, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33245762

ABSTRACT

Thousands of transcriptome data sets are available, but approaches for their use in dynamic cell response modelling are few, especially for processes affected simultaneously by two orthogonal influencing variables. We approached this problem for neuroepithelial development of human pluripotent stem cells (differentiation variable), in the presence or absence of valproic acid (signaling variable). Using few basic assumptions (sequential differentiation states of cells; discrete on/off states for individual genes in these states), and time-resolved transcriptome data, a comprehensive model of spontaneous and perturbed gene expression dynamics was developed. The model made reliable predictions (average correlation of 0.85 between predicted and subsequently tested expression values). Even regulations predicted to be non-monotonic were successfully validated by PCR in new sets of experiments. Transient patterns of gene regulation were identified from model predictions. They pointed towards activation of Wnt signaling as a candidate pathway leading to a redirection of differentiation away from neuroepithelial cells towards neural crest. Intervention experiments, using a Wnt/beta-catenin antagonist, led to a phenotypic rescue of this disturbed differentiation. Thus, our broadly applicable model allows the analysis of transcriptome changes in complex time/perturbation matrices.


Subject(s)
Cell Differentiation/genetics , Pluripotent Stem Cells/cytology , Transcriptome/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Wnt Signaling Pathway/genetics
9.
Oncogene ; 39(44): 6856-6870, 2020 10.
Article in English | MEDLINE | ID: mdl-32978523

ABSTRACT

Recent findings suggested a benefit of anti-EGFR therapy for basal-like muscle-invasive bladder cancer (MIBC). However, the impact on bladder cancer with substantial squamous differentiation (Sq-BLCA) and especially pure squamous cell carcinoma (SCC) remains unknown. Therefore, we comprehensively characterized pure and mixed Sq-BLCA (n = 125) on genetic and protein expression level, and performed functional pathway and drug-response analyses with cell line models and isolated primary SCC (p-SCC) cells of the human urinary bladder. We identified abundant EGFR expression in 95% of Sq-BLCA without evidence for activating EGFR mutations. Both SCaBER and p-SCC cells were sensitive to EGFR tyrosine kinase inhibitors (TKIs: erlotinib and gefitinib). Combined treatment with anti-EGFR TKIs and varying chemotherapeutics led to a concentration-dependent synergism in SCC cells according to the Chou-Talalay method. In addition, the siRNA knockdown of EGFR impaired SCaBER viability suggesting a putative "Achilles heel" of Sq-BLCA. The observed effects seem Sq-BLCA-specific since non-basal urothelial cancer cells were characterized by poor TKI sensitivity associated with a short-term feedback response potentially attenuating anti-tumor activity. Hence, our findings give further insights into a crucial, Sq-BLCA-specific role of the ERBB signaling pathway proposing improved effectiveness of anti-EGFR based regimens in combination with chemotherapeutics in squamous bladder cancers with wild-type EGFR-overexpression.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Transitional Cell/drug therapy , Protein Kinase Inhibitors/pharmacology , Urinary Bladder Neoplasms/drug therapy , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Cell Line, Tumor , Cohort Studies , Drug Resistance, Neoplasm/drug effects , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Female , Gefitinib/pharmacology , Gefitinib/therapeutic use , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Protein Kinase Inhibitors/therapeutic use , RNA, Small Interfering/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/metabolism , Receptor, ErbB-4/antagonists & inhibitors , Receptor, ErbB-4/metabolism , Signal Transduction/drug effects , Urinary Bladder/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
10.
Arch Toxicol ; 94(7): 2435-2461, 2020 07.
Article in English | MEDLINE | ID: mdl-32632539

ABSTRACT

Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.


Subject(s)
Documentation , Electronic Data Processing/legislation & jurisprudence , Government Regulation , Toxicity Tests , Toxicology/legislation & jurisprudence , Animals , Cells, Cultured , Europe , Humans , Policy Making , Reproducibility of Results , Retrospective Studies , Risk Assessment , Terminology as Topic , Zebrafish/embryology
11.
ALTEX ; 37(1): 164, 2020.
Article in English | MEDLINE | ID: mdl-31960940

ABSTRACT

In this manuscript, which appeared in ALTEX (2019), 36(4), 682- 699, doi:10.14573/altex.1909271 , the affiliation of Hennicke Kamp should be Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany. Further, the reference to an article by Bal-Price et al. (2015) should have the following doi:10.1007/s00204-015-1464-2 .

12.
Arch Toxicol ; 94(1): 151-171, 2020 01.
Article in English | MEDLINE | ID: mdl-31712839

ABSTRACT

The first in vitro tests for developmental toxicity made use of rodent cells. Newer teratology tests, e.g. developed during the ESNATS project, use human cells and measure mechanistic endpoints (such as transcriptome changes). However, the toxicological implications of mechanistic parameters are hard to judge, without functional/morphological endpoints. To address this issue, we developed a new version of the human stem cell-based test STOP-tox(UKN). For this purpose, the capacity of the cells to self-organize to neural rosettes was assessed as functional endpoint: pluripotent stem cells were allowed to differentiate into neuroepithelial cells for 6 days in the presence or absence of toxicants. Then, both transcriptome changes were measured (standard STOP-tox(UKN)) and cells were allowed to form rosettes. After optimization of staining methods, an imaging algorithm for rosette quantification was implemented and used for an automated rosette formation assay (RoFA). Neural tube toxicants (like valproic acid), which are known to disturb human development at stages when rosette-forming cells are present, were used as positive controls. Established toxicants led to distinctly different tissue organization and differentiation stages. RoFA outcome and transcript changes largely correlated concerning (1) the concentration-dependence, (2) the time dependence, and (3) the set of positive hits identified amongst 24 potential toxicants. Using such comparative data, a prediction model for the RoFA was developed. The comparative analysis was also used to identify gene dysregulations that are particularly predictive for disturbed rosette formation. This 'RoFA predictor gene set' may be used for a simplified and less costly setup of the STOP-tox(UKN) assay.


Subject(s)
Neural Stem Cells/drug effects , Neurodevelopmental Disorders/chemically induced , Neurotoxins/pharmacology , Rosette Formation/methods , Toxicity Tests/methods , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Humans , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Oligonucleotide Array Sequence Analysis , Time Factors
13.
ALTEX ; 36(4): 682-699, 2019.
Article in English | MEDLINE | ID: mdl-31658359

ABSTRACT

Only few cell-based test methods are described by Organisation for Economic Co-operation and Development (OECD) test guidelines or other regulatory references (e.g., the European Pharmacopoeia). The majority of toxicity tests still falls into the category of non-guideline methods. Data from these tests may nevertheless be used to support regulatory decisions or to guide strategies to assess compounds (e.g., drugs, agrochemicals) during research and development if they fulfill basic requirements concerning their relevance, reproducibility and predictivity. Only a method description of sufficient clarity and detail allows interpretation and use of the data. To guide regulators faced with increasing amounts of data from non-guideline studies, the OECD formulated Guidance Document 211 (GD211) on method documentation for the purpose of safety assessment. As GD211 is targeted mainly at regulators, it leaves scientists less familiar with regulation uncertain as to what level of detail is required and how individual questions should be answered. Moreover, little attention was given to the description of the test system (i.e., cell culture) and the steps leading to it being established in the guidance. To address these issues, an annotated toxicity test method template (ToxTemp) was developed (i) to fulfill all requirements of GD211, (ii) to guide the user concerning the types of answers and detail of information required, (iii) to include acceptance criteria for test elements, and (iv) to define the cells sufficiently and transparently. The fully annotated ToxTemp is provided here, together with reference to a database containing exemplary descriptions of more than 20 cell-based tests.


Subject(s)
Toxicity Tests/methods , Animals , Evaluation Studies as Topic , Humans , Organisation for Economic Co-Operation and Development , Reproducibility of Results , Research Design , Toxicity Tests/standards
14.
ALTEX ; 36(3): 506, 2019.
Article in English | MEDLINE | ID: mdl-31329255

ABSTRACT

In this manuscript, which appeared in ALTEX 35 , 306-352 ( doi:10.14573/altex.1712081 ), the Acknowledgements should read: This work was supported by the Doerenkamp-Zbinden Foundation, EFSA, the BMBF, JPI-NutriCog-Selenius, and it has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 681002 (EU-ToxRisk).

16.
Arch Toxicol ; 92(12): 3487-3503, 2018 12.
Article in English | MEDLINE | ID: mdl-30298209

ABSTRACT

Genomic drift affects the functional properties of cell lines, and the reproducibility of data from in vitro studies. While chromosomal aberrations and mutations in single pivotal genes are well explored, little is known about effects of minor, possibly pleiotropic, genome changes. We addressed this question for the human dopaminergic neuronal precursor cell line LUHMES by comparing two subpopulations (SP) maintained either at the American-Type-Culture-Collection (ATCC) or by the original provider (UKN). Drastic differences in susceptibility towards the specific dopaminergic toxicant 1-methyl-4-phenylpyridinium (MPP+) were observed. Whole-genome sequencing was performed to identify underlying genetic differences. While both SP had normal chromosome structures, they displayed about 70 differences on the level of amino acid changing events. Some of these differences were confirmed biochemically, but none offered a direct explanation for the altered toxicant sensitivity pattern. As second approach, markers known to be relevant for the intended use of the cells were specifically tested. The "ATCC" cells rapidly down-regulated the dopamine-transporter and tyrosine-hydroxylase after differentiation, while "UKN" cells maintained functional levels. As the respective genes were not altered themselves, we conclude that polygenic complex upstream changes can have drastic effects on biochemical features and toxicological responses of relatively similar SP of cells.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Dopaminergic Neurons/metabolism , Genetic Drift , Whole Genome Sequencing/methods , Cell Differentiation/drug effects , Cell Line , Cells, Cultured , Dopamine Plasma Membrane Transport Proteins/genetics , Down-Regulation/genetics , Humans , Reproducibility of Results , Tyrosine 3-Monooxygenase/genetics
17.
ALTEX ; 35(3): 306-352, 2018.
Article in English | MEDLINE | ID: mdl-29485663

ABSTRACT

Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).


Subject(s)
Animal Testing Alternatives , Guidelines as Topic , Neurotoxicity Syndromes/etiology , Toxicity Tests/methods , Animals , Education , Humans , Risk Assessment , Toxicity Tests/trends
18.
Toxicol Appl Pharmacol ; 354: 64-80, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29278688

ABSTRACT

Developmental neurotoxicity (DNT) may be induced when chemicals disturb a key neurodevelopmental process, and many tests focus on this type of toxicity. Alternatively, DNT may occur when chemicals are cytotoxic only during a specific neurodevelopmental stage. The toxicant sensitivity is affected by the expression of toxicant targets and by resilience factors. Although cellular metabolism plays an important role, little is known how it changes during human neurogenesis, and how potential alterations affect toxicant sensitivity of mature vs. immature neurons. We used immature (d0) and mature (d6) LUHMES cells (dopaminergic human neurons) to provide initial answers to these questions. Transcriptome profiling and characterization of energy metabolism suggested a switch from predominantly glycolytic energy generation to a more pronounced contribution of the tricarboxylic acid cycle (TCA) during neuronal maturation. Therefore, we used pulsed stable isotope-resolved metabolomics (pSIRM) to determine intracellular metabolite pool sizes (concentrations), and isotopically non-stationary 13C-metabolic flux analysis (INST 13C-MFA) to calculate metabolic fluxes. We found that d0 cells mainly use glutamine to fuel the TCA. Furthermore, they rely on extracellular pyruvate to allow continuous growth. This metabolic situation does not allow for mitochondrial or glycolytic spare capacity, i.e. the ability to adapt energy generation to altered needs. Accordingly, neuronal precursor cells displayed a higher sensitivity to several mitochondrial toxicants than mature neurons differentiated from them. In summary, this study shows that precursor cells lose their glutamine dependency during differentiation while they gain flexibility of energy generation and thereby increase their resistance to low concentrations of mitochondrial toxicants.


Subject(s)
Dopaminergic Neurons/drug effects , Energy Metabolism/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurotoxicity Syndromes/etiology , Cells, Cultured , Citric Acid Cycle/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dose-Response Relationship, Drug , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/drug effects , Glycolysis/drug effects , Humans , Metabolomics/methods , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Risk Assessment , Toxicity Tests/methods
19.
Arch Toxicol ; 91(11): 3477-3505, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29051992

ABSTRACT

Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field.


Subject(s)
Adverse Outcome Pathways , Ecotoxicology/methods , Animals , Ecotoxicology/history , History, 21st Century , Humans , Mice, Inbred C57BL , Quality Control , Risk Assessment/methods , Systems Biology , Toxicokinetics , Vinyl Compounds/adverse effects
20.
Arch Toxicol ; 91(11): 3613-3632, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28477266

ABSTRACT

Many in vitro tests have been developed to screen for potential neurotoxicity. However, only few cell function-based tests have been used for comparative screening, and thus experience is scarce on how to confirm and evaluate screening hits. We addressed these questions for the neural crest cell migration test (cMINC). After an initial screen, a hit follow-up strategy was devised. A library of 75 compounds plus internal controls (NTP80-list), assembled by the National Toxicology Program of the USA (NTP) was used. It contained some known classes of (developmental) neurotoxic compounds. The primary screen yielded 23 confirmed hits, which comprised ten flame retardants, seven pesticides and six drug-like compounds. Comparison of concentration-response curves for migration and viability showed that all hits were specific. The extent to which migration was inhibited was 25-90%, and two organochlorine pesticides (DDT, heptachlor) were most efficient. In the second part of this study, (1) the cMINC assay was repeated under conditions that prevent proliferation; (2) a transwell migration assay was used as a different type of migration assay; (3) cells were traced to assess cell speed. Some toxicants had largely varying effects between assays, but each hit was confirmed in at least one additional test. This comparative study allows an estimate on how confidently the primary hits from a cell function-based screen can be considered as toxicants disturbing a key neurodevelopmental process. Testing of the NTP80-list in more assays will be highly interesting to assemble a test battery and to build prediction models for developmental toxicity.


Subject(s)
Cell Movement/drug effects , Neural Crest/cytology , Toxicity Tests/methods , Cell Proliferation/drug effects , Cells, Cultured , DDT/toxicity , Drug Evaluation, Preclinical/methods , Heptachlor/toxicity , Humans , Neural Crest/drug effects , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL