Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
BMC Genet ; 17(1): 74, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27266705

ABSTRACT

BACKGROUND: Fibrotic idiopathic interstitial pneumonias (fIIP) are a group of fatal lung diseases with largely unknown etiology and without definitive treatment other than lung transplant to prolong life. There is strong evidence for the importance of both rare and common genetic risk alleles in familial and sporadic disease. We have previously used genome-wide single nucleotide polymorphism data to identify 10 risk loci for fIIP. Here we extend that work to imputed genome-wide genotypes and conduct new RNA sequencing studies of lung tissue to identify and characterize new fIIP risk loci. RESULTS: We performed genome-wide genotype imputation association analyses in 1616 non-Hispanic white (NHW) cases and 4683 NHW controls followed by validation and replication (878 cases, 2017 controls) genotyping and targeted gene expression in lung tissue. Following meta-analysis of the discovery and replication populations, we identified a novel fIIP locus in the HLA region of chromosome 6 (rs7887 P meta = 3.7 × 10(-09)). Imputation of classic HLA alleles identified two in high linkage disequilibrium that are associated with fIIP (DRB1*15:01 P = 1.3 × 10(-7) and DQB1*06:02 P = 6.1 × 10(-8)). Targeted RNA-sequencing of the HLA locus identified 21 genes differentially expressed between fibrotic and control lung tissue (Q < 0.001), many of which are involved in immune and inflammatory response regulation. In addition, the putative risk alleles, DRB1*15:01 and DQB1*06:02, are associated with expression of the DQB1 gene among fIIP cases (Q < 1 × 10(-16)). CONCLUSIONS: We have identified a genome-wide significant association between the HLA region and fIIP. Two HLA alleles are associated with fIIP and affect expression of HLA genes in lung tissue, indicating that the potential genetic risk due to HLA alleles may involve gene regulation in addition to altered protein structure. These studies reveal the importance of the HLA region for risk of fIIP and a basis for the potential etiologic role of auto-immunity in fIIP.


Subject(s)
Genome-Wide Association Study/methods , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Idiopathic Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/genetics , Sequence Analysis, RNA/methods , Adult , Aged , Chromosomes, Human, Pair 6/genetics , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Loci , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Male , Middle Aged
2.
PLoS One ; 9(7): e101509, 2014.
Article in English | MEDLINE | ID: mdl-25033200

ABSTRACT

RATIONALE: The rationale was to utilize a bioinformatics approach to identify miRNA binding sites in genes with single nucleotide mutations (SNPs) to discover pathways in heart failure (HF). OBJECTIVE: The objective was to focus on the genes containing miRNA binding sites with miRNAs that were significantly altered in end-stage HF and in response to a left ventricular assist device (LVAD). METHODS AND RESULTS: BEDTools v2.14.3 was used to discriminate SNPs within predicted 3'UTR miRNA binding sites. A member of the miR-15/107 family, miR-16, was decreased in the circulation of end-stage HF patients and increased in response to a LVAD (p<0.001). MiR-16 decreased Vacuolar Protein Sorting 4a (VPS4a) expression in HEK 293T cells (p<0.01). The SNP rs16958754 was identified in the miR-15/107 family binding site of VPS4a which abolished direct binding of miR-16 to the 3'UTR of VPS4a (p<0.05). VPS4a was increased in the circulation of end-stage HF patients (p<0.001), and led to a decrease in the number of HEK 293T cells in vitro (p<0.001). CONCLUSIONS: We provide evidence that miR-16 decreases in the circulation of end-stage HF patients and increases with a LVAD. Modeling studies suggest that miR-16 binds to and decreases expression of VPS4a. Overexpression of VPS4a decreases cell number. Together, these experiments suggest that miR-16 and VPS4a expression are altered in end-stage HF and in response to unloading with a LVAD. This signaling pathway may lead to reduced circulating cell number in HF.


Subject(s)
3' Untranslated Regions/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Heart Failure/genetics , MicroRNAs/genetics , Vacuolar Proton-Translocating ATPases/genetics , ATPases Associated with Diverse Cellular Activities , Aged , Binding Sites/genetics , Cell Line , Endosomal Sorting Complexes Required for Transport/biosynthesis , Endosomal Sorting Complexes Required for Transport/blood , Female , HEK293 Cells , Heart Failure/blood , Heart Failure/therapy , Heart-Assist Devices , Humans , Male , MicroRNAs/blood , Middle Aged , Myocardium/pathology , Polymorphism, Single Nucleotide , Vacuolar Proton-Translocating ATPases/biosynthesis , Vacuolar Proton-Translocating ATPases/blood
3.
Mol Cell Biochem ; 385(1-2): 225-38, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24101444

ABSTRACT

Heparan sulfate proteoglycans act as co-receptors for many chemokines and growth factors. The sulfation pattern of the heparan sulfate chains is a critical regulatory step affecting the binding of chemokines and growth factors. N-deacetylase-N-sulfotransferase1 (Ndst1) is one of the first enzymes to catalyze sulfation. Previously published work has shown that HSPGs alter tangent moduli and stiffness of tissues and cells. We hypothesized that loss of Ndst1 in smooth muscle would lead to significant changes in heparan sulfate modification and the elastic properties of arteries. In line with this hypothesis, the axial tangent modulus was significantly decreased in aorta from mice lacking Ndst1 in smooth muscle (SM22αcre(+)Ndst1(-/-), p < 0.05, n = 5). The decrease in axial tangent modulus was associated with a significant switch in myosin and actin types and isoforms expressed in aorta and isolated aortic vascular smooth muscle cells. In contrast, no changes were found in the compliance of smaller thoracodorsal arteries of SM22αcre(+)Ndst1(-/-) mice. In summary, the major findings of this study were that targeted ablation of Ndst1 in smooth muscle cells results in altered biomechanical properties of aorta and differential expression of myosin and actin types and isoforms.


Subject(s)
Gene Deletion , Muscle, Smooth, Vascular/physiopathology , Sulfotransferases/deficiency , Animals , Arteries/physiopathology , Biomechanical Phenomena , Compliance , Down-Regulation/genetics , In Vitro Techniques , Mice , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Organ Specificity , Reproducibility of Results , Staining and Labeling , Stress, Mechanical , Sulfotransferases/metabolism , Up-Regulation/genetics , Vasoconstriction
4.
Nat Genet ; 45(6): 613-20, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23583980

ABSTRACT

We performed a genome-wide association study of non-Hispanic, white individuals with fibrotic idiopathic interstitial pneumonias (IIPs; n = 1,616) and controls (n = 4,683), with follow-up replication analyses in 876 cases and 1,890 controls. We confirmed association with TERT at 5p15, MUC5B at 11p15 and the 3q26 region near TERC, and we identified seven newly associated loci (Pmeta = 2.4 × 10(-8) to 1.1 × 10(-19)), including FAM13A (4q22), DSP (6p24), OBFC1 (10q24), ATP11A (13q34), DPP9 (19p13) and chromosomal regions 7q22 and 15q14-15. Our results suggest that genes involved in host defense, cell-cell adhesion and DNA repair contribute to risk of fibrotic IIPs.


Subject(s)
Genetic Loci , Idiopathic Pulmonary Fibrosis/genetics , Case-Control Studies , Chromosomes, Human , Gene Expression , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Lung/metabolism , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
5.
Br J Nutr ; 109(3): 493-502, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-22583563

ABSTRACT

Vitamin D is known for maintaining Ca homeostasis and bone structure, and may also decrease susceptibility to chronic and infectious diseases. However, data on vitamin D status and its predictors among Southeast Asian populations are limited. We evaluated the distribution and determinants (genetic and environmental) of serum 25-hydroxyvitamin D (25(OH)D) concentrations among 504 middle-aged and elderly participants (aged 45-74 years) in the Singapore Chinese Health Study. Data on dietary and other lifestyle factors were collected by trained interviewers. Serum 25(OH)D concentrations and genetic polymorphisms in vitamin D metabolism pathway enzymes (cytochrome P450 (CYP) 2R1, 3A4, 27B1, 24A1; vitamin D binding protein (also known as group-specific component, GC); and vitamin D receptor) were measured using stored biospecimens. Mean 25(OH)D concentration was 68·8 nmol/l. Serum 25(OH)D concentrations were positively associated with dietary vitamin D intake, and inversely associated with hours spent sitting at work. BMI was not associated with 25(OH)D concentrations. CYP2R1 rs10741657, rs12794714, rs1993116; CYP3A4 rs2242480; and GC rs4588, rs7041, rs16847015, rs2298849 were statistically significantly associated with 25(OH)D concentrations. Individuals with the Gc2-2 haplotype (rs4588AA/rs7041TT) had statistically significantly lower 25(OH)D concentrations compared to all other Gc haplotypes (P-trend < 0·001). The majority of participants (86 %) had 25(OH)D concentrations ≥ 50 nmol/l, which is consistent with the 2011 Institute of Medicine (US) recommendation for bone health, and 32 % had concentrations of ≥ 75 nmol/l that are thought to be required for broader health effects. Dietary vitamin D intake, hours spent indoors at work and genetic variation in CYP2R1, CYP3A4 and GC are significant predictors of 25(OH)D concentrations among Singapore Chinese.


Subject(s)
Cholestanetriol 26-Monooxygenase/genetics , Cytochrome P-450 CYP3A/genetics , Diet/adverse effects , Gene-Environment Interaction , Polymorphism, Single Nucleotide , Vitamin D Deficiency/etiology , Vitamin D-Binding Protein/genetics , 25-Hydroxyvitamin D 2/blood , Aged , Calcifediol/blood , Cholestanetriol 26-Monooxygenase/metabolism , Cohort Studies , Cross-Sectional Studies , Cytochrome P-450 CYP3A/metabolism , Cytochrome P450 Family 2 , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Nutritional Status , Sedentary Behavior , Singapore/epidemiology , Vitamin D/administration & dosage , Vitamin D Deficiency/blood , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/genetics , Vitamin D-Binding Protein/metabolism
6.
J Biol Chem ; 278(46): 45746-52, 2003 Nov 14.
Article in English | MEDLINE | ID: mdl-12947097

ABSTRACT

Based on structure-activity relationships of the angiostatic beta-sheet-forming peptide anginex, we have designed a mimetic, 6DBF7, which inhibits angiogenesis and tumor growth in mice. 6DBF7 is composed of a beta-sheet-inducing dibenzofuran (DBF)-turn mimetic and two short key amino acid sequences from anginex. This novel antiangiogenic molecule is more effective in vivo than parent anginex. In a mouse xenograft model for ovarian carcinoma, 6DBF7 is observed to reduce tumor growth by up to 80%. It is suggested that the activity is based on antiangiogenesis, because in vitro tube formation is inhibited, and because treatment of tumor-bearing mice led to a significant reduction in microvessel density within the tumor. This partial peptide mimetic is the first endothelial cell-specific molecule designed as a substitute for an angiostatic inhibitory peptide.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Peptides/chemistry , Proteins/chemistry , Proteins/pharmacology , Alanine/chemistry , Amino Acid Sequence , Animals , Benzofurans/chemistry , Cell Division , Cell Line, Tumor , Cells, Cultured , Endothelium, Vascular/metabolism , Female , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Magnetic Resonance Spectroscopy , Mice , Mice, Nude , Models, Molecular , Molecular Sequence Data , Neoplasm Transplantation , Ovarian Neoplasms , Protein Structure, Secondary , Sequence Homology, Amino Acid , Structure-Activity Relationship , Time Factors , Umbilical Veins/cytology
SELECTION OF CITATIONS
SEARCH DETAIL