Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm (Lond) ; 12: 13, 2015.
Article in English | MEDLINE | ID: mdl-25717285

ABSTRACT

BACKGROUND: Nuclear receptor 4A2 (NR4A2) is an orphan nuclear receptor and constitutively active transcription factor expressed at elevated levels in inflamed joint tissues from patients with arthritis. Inflammatory mediators rapidly and potently induce NR4A2 expression in resident joint cells and infiltrating immune cells. This receptor promotes synovial hyperplasia by increasing proliferation of synoviocytes and inducing transcription of matrix degrading enzymes and pro-inflammatory mediators. In order to further elucidate the molecular mechanisms of NR4A2, we conducted a gene expression screen to identify novel transcriptional targets of NR4A2 that may contribute to arthritis progression. METHODS: NR4A2 was over-expressed in human synoviocytes by lentiviral transduction and gene expression changes were measured using qPCR arrays specific for inflammation, proliferation, adhesion, and migration pathways. Subsequent analysis focused on the most potently induced gene prolactin (PRL). Messenger RNA levels of PRL and PRL receptor (PRL-R) were measured by RT-qPCR and protein levels were measured by ELISA. PRL promoter studies were conducted in synoviocytes transiently transfected with NR4A2 and PRL reporter constructs. Molecular responses to PRL in synoviocytes were addressed using qPCR arrays specific for JAK/STAT signaling pathways. RESULTS: PRL was the most potently induced gene on the qPCR arrays, exhibiting a 68-fold increase in response to ectopic NR4A2. This gene encodes an immunomodulatory peptide hormone with roles in autoimmune diseases and inflammation. Induction of PRL mRNA and secreted protein by NR4A2 was confirmed in subsequent experiments, with increases of 300-fold and 18-fold respectively. Depletion of endogenous NR4A receptors with shRNA reduced basal and PGE2-induced PRL levels by 95%. At the transcriptional level, NR4A2 requires a functional DNA binding domain to transactivate the distal PRL promoter. Deletional analysis indicates that NR4A2 targets a region of the distal PRL promoter spanning -270 to -32 bp. In synoviocytes, recombinant PRL regulates several genes involved in inflammation, proliferation, and cell survival, suggesting that NR4A2 induced PRL may also impact these pathways and contribute to arthritis progression. CONCLUSIONS: These results provide the first evidence for transcriptional regulation of the immunomodulatory peptide hormone PRL by NR4A2 in synoviocytes, and highlight a novel molecular pathway in inflammatory arthritis.

2.
Arthritis Rheum ; 64(7): 2126-36, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22275273

ABSTRACT

OBJECTIVE: To address the role of the nuclear receptor 4A (NR4A) family of orphan nuclear receptors in synoviocyte transformation, hyperplasia, and regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in models of inflammatory arthritis. METHODS: NR4A messenger RNA levels in synovial tissue and primary synoviocytes were measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR). NR4A2 was stably overexpressed in normal synoviocytes, and cell proliferation, survival, anchorage-independent growth, migration, and invasion were monitored in vitro. MMP and TIMP expression levels were analyzed by quantitative RT-PCR, and MMP-13 promoter activity was measured using reporter assays. Stable depletion of endogenous NR4A levels was achieved by lentiviral transduction of NR4A short hairpin RNA (shRNA), and the effects on proliferation, migration, and MMP-13 expression were analyzed. RESULTS: NR4A2 was expressed at elevated levels in normal, OA, and RA synovial tissue and in primary RA synoviocytes. Tumor necrosis factor α (TNFα) rapidly and selectively induced expression of NR4A2 in synoviocytes. Ectopic expression of NR4A2 in normal synoviocytes significantly increased proliferation and survival, promoted anchorage-independent growth, and induced migration and invasion. MMP-13 gene expression was synergistically induced by NR4A2 and TNFα, while expression of TIMP-2 was antagonized. NR4A2 directly transactivated the proximal MMP-13 promoter, and a point mutation in the DNA binding domain of NR4A2 abolished transcriptional activation. Depletion of endogenous NR4A receptors with shRNA reduced synoviocyte proliferation, migration, and MMP-13 expression. CONCLUSION: The orphan nuclear receptor NR4A2 is a downstream mediator of TNFα signaling in synovial tissue. NR4A2 transcriptional activity contributes to the hyperplastic and invasive phenotype of synoviocytes that leads to cartilage destruction, suggesting that this receptor may show promise as a therapeutic target in inflammatory arthritis.


Subject(s)
Arthritis, Rheumatoid/genetics , Cell Movement/genetics , Cell Proliferation , Matrix Metalloproteinase 13/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Synovial Membrane/metabolism , Arthritis, Rheumatoid/metabolism , Humans , Matrix Metalloproteinase 13/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Signal Transduction/genetics , Synovial Membrane/cytology , Tissue Inhibitor of Metalloproteinases/genetics , Tissue Inhibitor of Metalloproteinases/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...