Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
JCI Insight ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935435

ABSTRACT

Endoplasmic reticulum (ER) stress and proinsulin misfolding are heralded as contributing factors to ß-cell dysfunction in Type 2 diabetes (T2D), yet how ER function becomes compromised is not well understood. Recent data identifies altered ER redox homeostasis as a critical mechanism that contributes to insulin granule loss in diabetes. Hyperoxidation of the ER delays proinsulin export and limits the proinsulin supply available for insulin granule formation. In this report, we identified glucose metabolism as a critical determinant in the redox homeostasis of the ER. Using multiple ß-cell models, we showed that loss of mitochondrial function or inhibition of cellular metabolism elicited ER hyperoxidation and delayed ER proinsulin export. Our data further demonstrated that ß-cell ER redox homeostasis was supported by the metabolic supply of reductive redox donors. We showed that limiting NADPH and thioredoxin flux delayed ER proinsulin export, whereas Txnip suppression restored ER redox and proinsulin trafficking. Taken together, we propose that ß-cell ER redox homeostasis is buffered by cellular redox donor cycles, which are maintained through active glucose metabolism.

2.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895283

ABSTRACT

Proteotoxicity is a contributor to the development of type 2 diabetes (T2D), but it is unknown whether protein misfolding in T2D is generalized or has special features. Here, we report a robust accumulation of misfolded proteins within the mitochondria of human pancreatic islets in T2D and elucidate its impact on ß cell viability. Surprisingly, quantitative proteomics studies of protein aggregates reveal that human islets from donors with T2D have a signature more closely resembling mitochondrial rather than ER protein misfolding. The matrix protease LonP1 and its chaperone partner mtHSP70 were among the proteins enriched in protein aggregates. Deletion of LONP1 in mice yields mitochondrial protein misfolding and reduced respiratory function, ultimately leading to ß cell apoptosis and hyperglycemia. Intriguingly, LONP1 gain of function ameliorates mitochondrial protein misfolding and restores human ß cell survival following glucolipotoxicity via a protease-independent effect requiring LONP1-mtHSP70 chaperone activity. Thus, LONP1 promotes ß cell survival and prevents hyperglycemia by facilitating mitochondrial protein folding. These observations may open novel insights into the nature of impaired proteostasis on ß cell loss in the pathogenesis of T2D that could be considered as future therapeutic targets.

3.
Cell Rep Methods ; 3(11): 100642, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37963464

ABSTRACT

To address the needs of the life sciences community and the pharmaceutical industry in pre-clinical drug development to both maintain and continuously assess tissue metabolism and function with simple and rapid systems, we improved on the initial BaroFuse to develop it into a fully functional, pumpless, scalable multi-channel fluidics instrument that continuously measures changes in oxygen consumption and other endpoints in response to test compounds. We and several other laboratories assessed it with a wide range of tissue types including retina, pancreatic islets, liver, and hypothalamus with both aqueous and gaseous test compounds. The setup time was less than an hour for all collaborating groups, and there was close agreement between data obtained from the different laboratories. This easy-to-use system reliably generates real-time metabolic and functional data from tissue and cells in response to test compounds that will address a critical need in basic and applied research.


Subject(s)
Islets of Langerhans , Islets of Langerhans/metabolism , Insulin Secretion , Oxygen/metabolism , Oxygen Consumption , Gases/metabolism
4.
bioRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37662349

ABSTRACT

MAFA and MAFB are related basic-leucine-zipper domain containing transcription factors which have important regulatory roles in a variety of cellular contexts, including pancreatic islet hormone producing α and ß cells. These proteins have similar as well as distinct functional properties, and here we first used AlphaFold2, an artificial intelligence-based structural prediction program, to obtain insight into the three-dimensional organization of their non-DNA binding/dimerization sequences. This analysis was conducted on the wildtype (WT) proteins as well the pathogenic MAFA Ser64Phe (MAFA S64F ) and MAFB Ser70Ala (MAFB S70A ) mutants, with structural differences revealed between MAFA WT and MAFB WT in addition to MAFA S64F and MAFA WT , but not MAFB S70A and MAFB WT . Functional analysis disclosed that the inability to properly phosphorylate at S70 in MAFB S70A , like S65 in MAFA S64F , greatly increased protein stability and enabled MAFB S70A to accelerate cellular senescence in cultured cells. Significant differences were also observed in the ability of MAFA, MAFA S64F , MAFB, and MAFB S70A to cooperatively stimulate Insulin enhancer-driven activity in the presence of other islet-enriched transcription factors. Experiments performed on protein chimeras disclosed that these properties were greatly influenced by structural differences found between the WT and mutant proteins. In general, these results revealed that AlphaFold2 predicts features essential to protein activity.

5.
JCI Insight ; 8(16)2023 08 22.
Article in English | MEDLINE | ID: mdl-37606041

ABSTRACT

Type 2 diabetes (T2D) is associated with compromised identity of insulin-producing pancreatic islet ß cells, characterized by inappropriate production of other islet cell-enriched hormones. Here, we examined how hormone misexpression was influenced by the MAFA and MAFB transcription factors, closely related proteins that maintain islet cell function. Mice specifically lacking MafA in ß cells demonstrated broad, population-wide changes in hormone gene expression with an overall gene signature closely resembling islet gastrin+ (Gast+) cells generated under conditions of chronic hyperglycemia and obesity. A human ß cell line deficient in MAFB, but not one lacking MAFA, also produced a GAST+ gene expression pattern. In addition, GAST was detected in human T2D ß cells with low levels of MAFB. Moreover, evidence is provided that human MAFB can directly repress GAST gene transcription. These results support a potentially novel, species-specific role for MafA and MAFB in maintaining adult mouse and human ß cell identity, respectively. Here, we discuss the possibility that induction of Gast/GAST and other non-ß cell hormones, by reduction in the levels of these transcription factors, represents a dysfunctional ß cell signature.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Adult , Humans , Animals , Mice , MafB Transcription Factor/genetics , Insulin
6.
Nat Commun ; 13(1): 2340, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35487893

ABSTRACT

The dynamin-like GTPases Mitofusin 1 and 2 (Mfn1 and Mfn2) are essential for mitochondrial function, which has been principally attributed to their regulation of fission/fusion dynamics. Here, we report that Mfn1 and 2 are critical for glucose-stimulated insulin secretion (GSIS) primarily through control of mitochondrial DNA (mtDNA) content. Whereas Mfn1 and Mfn2 individually were dispensable for glucose homeostasis, combined Mfn1/2 deletion in ß-cells reduced mtDNA content, impaired mitochondrial morphology and networking, and decreased respiratory function, ultimately resulting in severe glucose intolerance. Importantly, gene dosage studies unexpectedly revealed that Mfn1/2 control of glucose homeostasis was dependent on maintenance of mtDNA content, rather than mitochondrial structure. Mfn1/2 maintain mtDNA content by regulating the expression of the crucial mitochondrial transcription factor Tfam, as Tfam overexpression ameliorated the reduction in mtDNA content and GSIS in Mfn1/2-deficient ß-cells. Thus, the primary physiologic role of Mfn1 and 2 in ß-cells is coupled to the preservation of mtDNA content rather than mitochondrial architecture, and Mfn1 and 2 may be promising targets to overcome mitochondrial dysfunction and restore glucose control in diabetes.


Subject(s)
DNA, Mitochondrial , Mitochondria , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , GTP Phosphohydrolases/metabolism , Glucose/metabolism , Homeostasis , Mitochondria/metabolism
7.
Cell Metab ; 34(2): 256-268.e5, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108513

ABSTRACT

In diabetes, glucagon secretion from pancreatic α cells is dysregulated. The underlying mechanisms, and whether dysfunction occurs uniformly among cells, remain unclear. We examined α cells from human donors and mice using electrophysiological, transcriptomic, and computational approaches. Rising glucose suppresses α cell exocytosis by reducing P/Q-type Ca2+ channel activity, and this is disrupted in type 2 diabetes (T2D). Upon high-fat feeding of mice, α cells shift toward a "ß cell-like" electrophysiological profile in concert with indications of impaired identity. In human α cells we identified links between cell membrane properties and cell surface signaling receptors, mitochondrial respiratory chain complex assembly, and cell maturation. Cell-type classification using machine learning of electrophysiology data demonstrated a heterogenous loss of "electrophysiologic identity" in α cells from donors with type 2 diabetes. Indeed, a subset of α cells with impaired exocytosis is defined by an enrichment in progenitor and lineage markers and upregulation of an immature transcriptomic phenotype, suggesting important links between α cell maturation state and dysfunction.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Secreting Cells , Islets of Langerhans , Animals , Diabetes Mellitus, Type 2/metabolism , Exocytosis/physiology , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Mice
8.
Cell Rep ; 37(2): 109813, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644565

ABSTRACT

A heterozygous missense mutation of the islet ß cell-enriched MAFA transcription factor (p.Ser64Phe [S64F]) is found in patients with adult-onset ß cell dysfunction (diabetes or insulinomatosis), with men more prone to diabetes than women. This mutation engenders increased stability to the unstable MAFA protein. Here, we develop a S64F MafA mouse model to determine how ß cell function is affected and find sex-dependent phenotypes. Heterozygous mutant males (MafAS64F/+) display impaired glucose tolerance, while females are slightly hypoglycemic with improved blood glucose clearance. Only MafAS64F/+ males show transiently higher MafA protein levels preceding glucose intolerance and sex-dependent changes to genes involved in Ca2+ signaling, DNA damage, aging, and senescence. MAFAS64F production in male human ß cells also accelerate cellular senescence and increase senescence-associated secretory proteins compared to cells expressing MAFAWT. These results implicate a conserved mechanism of accelerated islet aging and senescence in promoting diabetes in MAFAS64F carriers in a sex-biased manner.


Subject(s)
Cellular Senescence , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Maf Transcription Factors, Large/metabolism , Animals , Animals, Genetically Modified , Blood Glucose/metabolism , Calcium Signaling , Cell Line , DNA Damage , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Female , Genetic Predisposition to Disease , Humans , Insulin/blood , Insulin-Secreting Cells/pathology , Maf Transcription Factors, Large/genetics , Male , Mice, Inbred C57BL , Mutation, Missense , Phenotype , Sex Characteristics , Sex Factors
9.
Pharmacol Rev ; 73(3): 1001-1015, 2021 07.
Article in English | MEDLINE | ID: mdl-34193595

ABSTRACT

Both type 1 and type 2 diabetes mellitus are advancing at exponential rates, placing significant burdens on health care networks worldwide. Although traditional pharmacologic therapies such as insulin and oral antidiabetic stalwarts like metformin and the sulfonylureas continue to be used, newer drugs are now on the market targeting novel blood glucose-lowering pathways. Furthermore, exciting new developments in the understanding of beta cell and islet biology are driving the potential for treatments targeting incretin action, islet transplantation with new methods for immunologic protection, and the generation of functional beta cells from stem cells. Here we discuss the mechanistic details underlying past, present, and future diabetes therapies and evaluate their potential to treat and possibly reverse type 1 and 2 diabetes in humans. SIGNIFICANCE STATEMENT: Diabetes mellitus has reached epidemic proportions in the developed and developing world alike. As the last several years have seen many new developments in the field, a new and up to date review of these advances and their careful evaluation will help both clinical and research diabetologists to better understand where the field is currently heading.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Insulin
10.
Diabetes ; 70(6): 1229-1241, 2021 06.
Article in English | MEDLINE | ID: mdl-34016598

ABSTRACT

Insulin-producing pancreatic ß-cells are central to glucose homeostasis, and their failure is a principal driver of diabetes development. To preserve optimal health ß-cells must withstand both intrinsic and extrinsic stressors, ranging from inflammation to increased peripheral insulin demand, in addition to maintaining insulin biosynthesis and secretory machinery. Autophagy is increasingly being appreciated as a critical ß-cell quality control system vital for glycemic control. Here we focus on the underappreciated, yet crucial, roles for selective and organelle-specific forms of autophagy as mediators of ß-cell health. We examine the unique molecular players underlying each distinct form of autophagy in ß-cells, including selective autophagy of mitochondria, insulin granules, lipid, intracellular amyloid aggregates, endoplasmic reticulum, and peroxisomes. We also describe how defects in selective autophagy pathways contribute to the development of diabetes. As all forms of autophagy are not the same, a refined view of ß-cell selective autophagy may inform new approaches to defend against the various insults leading to ß-cell failure in diabetes.


Subject(s)
Autophagy/physiology , Insulin-Secreting Cells/physiology , Animals , Diabetes Mellitus/etiology , Diabetes Mellitus/pathology , Diabetes Mellitus/physiopathology , Humans , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Islets of Langerhans/physiopathology , Mitophagy/physiology , Protein Aggregates/physiology , Transcription Factors/physiology , Ubiquitin-Protein Ligases/physiology
11.
Nat Commun ; 11(1): 2742, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488111

ABSTRACT

Next generation sequencing studies have highlighted discrepancies in ß-cells which exist between mice and men. Numerous reports have identified MAF BZIP Transcription Factor B (MAFB) to be present in human ß-cells postnatally, while its expression is restricted to embryonic and neo-natal ß-cells in mice. Using CRISPR/Cas9-mediated gene editing, coupled with endocrine cell differentiation strategies, we dissect the contribution of MAFB to ß-cell development and function specifically in humans. Here we report that MAFB knockout hPSCs have normal pancreatic differentiation capacity up to the progenitor stage, but favor somatostatin- and pancreatic polypeptide-positive cells at the expense of insulin- and glucagon-producing cells during endocrine cell development. Our results describe a requirement for MAFB late in the human pancreatic developmental program and identify it as a distinguishing transcription factor within islet cell subtype specification. We propose that hPSCs represent a powerful tool to model human pancreatic endocrine development and associated disease pathophysiology.


Subject(s)
Insulin-Secreting Cells/metabolism , MafB Transcription Factor/genetics , MafB Transcription Factor/metabolism , Pancreatic Stellate Cells/metabolism , Animals , CRISPR-Cas Systems , Cell Differentiation , Female , Gene Editing , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Humans , Insulin/metabolism , Islets of Langerhans/metabolism , Male , Mice , Stem Cells , Transcriptome
12.
Stem Cell Reports ; 15(1): 156-170, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32531190

ABSTRACT

Intestinal crypts have great capacity for repair and regeneration after intestinal stem cell (ISC) injury. Here, we define the cellular remodeling process resulting from ISC niche interruption by transient Notch pathway inhibition in adult mice. Although ISCs were retained, lineage tracing demonstrated a marked reduction in ISC function after Notch disruption. Surprisingly, Notch ligand-expressing Paneth cells were rapidly lost by apoptotic cell death. The ISC-Paneth cell changes were followed by a regenerative response, characterized by expansion of cells expressing Notch ligands Dll1 and Dll4, enhanced Notch signaling, and a proliferative surge. Lineage tracing and organoid studies showed that Dll1-expressing cells were activated to function as multipotential progenitors, generating both absorptive and secretory cells and replenishing the vacant Paneth cell pool. Our analysis uncovered a dynamic, multicellular remodeling response to acute Notch inhibition to repair the niche and restore homeostasis. Notably, this crypt regenerative response did not require ISC loss.


Subject(s)
Intestines/cytology , Intestines/physiology , Receptors, Notch/metabolism , Regeneration , Stem Cell Niche , Animals , Apoptosis , Calcium-Binding Proteins/metabolism , Cell Proliferation , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mice, Transgenic , Models, Biological , Stem Cells/cytology , Stem Cells/metabolism
13.
Diabetes ; 68(2): 337-348, 2019 02.
Article in English | MEDLINE | ID: mdl-30425060

ABSTRACT

The sustained expression of the MAFB transcription factor in human islet ß-cells represents a distinct difference in mice. Moreover, mRNA expression of closely related and islet ß-cell-enriched MAFA does not peak in humans until after 9 years of age. We show that the MAFA protein also is weakly produced within the juvenile human islet ß-cell population and that MafB expression is postnatally restricted in mouse ß-cells by de novo DNA methylation. To gain insight into how MAFB affects human ß-cells, we developed a mouse model to ectopically express MafB in adult mouse ß-cells using MafA transcriptional control sequences. Coexpression of MafB with MafA had no overt impact on mouse ß-cells, suggesting that the human adult ß-cell MAFA/MAFB heterodimer is functionally equivalent to the mouse MafA homodimer. However, MafB alone was unable to rescue the islet ß-cell defects in a mouse mutant lacking MafA in ß-cells. Of note, transgenic production of MafB in ß-cells elevated tryptophan hydroxylase 1 mRNA production during pregnancy, which drives the serotonin biosynthesis critical for adaptive maternal ß-cell responses. Together, these studies provide novel insight into the role of MAFB in human islet ß-cells.


Subject(s)
Insulin-Secreting Cells/metabolism , Maf Transcription Factors, Large/metabolism , MafB Transcription Factor/metabolism , Animals , Cells, Cultured , Chromatin Immunoprecipitation , Chromosomes, Artificial, Bacterial/genetics , DNA Methylation/genetics , DNA Methylation/physiology , Female , Humans , In Vitro Techniques , Maf Transcription Factors, Large/genetics , MafB Transcription Factor/genetics , Mice , Mice, Transgenic , Pregnancy , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
14.
Dev Cell ; 45(3): 347-361.e5, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29656931

ABSTRACT

Islet ß cells from newborn mammals exhibit high basal insulin secretion and poor glucose-stimulated insulin secretion (GSIS). Here we show that ß cells of newborns secrete more insulin than adults in response to similar intracellular Ca2+ concentrations, suggesting differences in the Ca2+ sensitivity of insulin secretion. Synaptotagmin 4 (Syt4), a non-Ca2+ binding paralog of the ß cell Ca2+ sensor Syt7, increased by ∼8-fold during ß cell maturation. Syt4 ablation increased basal insulin secretion and compromised GSIS. Precocious Syt4 expression repressed basal insulin secretion but also impaired islet morphogenesis and GSIS. Syt4 was localized on insulin granules and Syt4 levels inversely related to the number of readily releasable vesicles. Thus, transcriptional regulation of Syt4 affects insulin secretion; Syt4 expression is regulated in part by Myt transcription factors, which repress Syt4 transcription. Finally, human SYT4 regulated GSIS in EndoC-ßH1 cells, a human ß cell line. These findings reveal the role that altered Ca2+ sensing plays in regulating ß cell maturation.


Subject(s)
Calcium/pharmacology , Glucose/pharmacology , Insulin-Secreting Cells/cytology , Insulin/metabolism , Synaptotagmins/metabolism , Animals , Biological Transport , Cell Differentiation/drug effects , Female , Gene Expression Regulation/drug effects , Humans , Hypoglycemic Agents/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Knockout , Sweetening Agents/pharmacology , Synaptotagmins/genetics
15.
Stem Cell Reports ; 7(5): 826-839, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27720905

ABSTRACT

Much of our understanding about how intestinal stem and progenitor cells are regulated comes from studying the late fetal stages of development and the adult intestine. In this light, little is known about intestine development prior to the formation of stereotypical villus structures with columnar epithelium, a stage when the epithelium is pseudostratified and appears to be a relatively uniform population of progenitor cells with high proliferative capacity. Here, we investigated a role for WNT/ß-CATENIN signaling during the pseudostratified stages of development (E13.5, E14.5) and following villus formation (E15.5) in mice. In contrast to the well-described role for WNT/ß-CATENIN signaling as a regulator of stem/progenitor cells in the late fetal and adult gut, conditional epithelial deletion of ß-catenin or the Frizzled co-receptors Lrp5 and Lrp6 had no effect on epithelial progenitor cell proliferation in the pseudostratified epithelium. Mutant embryos displayed obvious developmental defects, including loss of proliferation and disruptions in villus formation starting only at E15.5. Mechanistically, our data suggest that WNT signaling-mediated proliferation at the time of villus formation is driven by mesenchymal, but not epithelial, WNT ligand secretion.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Cell Death , Cell Differentiation , Cell Proliferation , Gene Expression , Intestines/cytology , Intestines/embryology , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mice , Mice, Transgenic , Morphogenesis/genetics , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Organogenesis/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Wnt Proteins/genetics , beta Catenin/genetics , beta Catenin/metabolism
16.
Diabetes ; 65(8): 2331-41, 2016 08.
Article in English | MEDLINE | ID: mdl-27217483

ABSTRACT

ß-Cell proliferation and expansion during pregnancy are crucial for maintaining euglycemia in response to increased metabolic demands placed on the mother. Prolactin and placental lactogen signal through the prolactin receptor (PRLR) and contribute to adaptive ß-cell responses in pregnancy; however, the in vivo requirement for PRLR signaling specifically in maternal ß-cell adaptations remains unknown. We generated a floxed allele of Prlr, allowing conditional loss of PRLR in ß-cells. In this study, we show that loss of PRLR signaling in ß-cells results in gestational diabetes mellitus (GDM), reduced ß-cell proliferation, and failure to expand ß-cell mass during pregnancy. Targeted PRLR loss in maternal ß-cells in vivo impaired expression of the transcription factor Foxm1, both G1/S and G2/M cyclins, tryptophan hydroxylase 1 (Tph1), and islet serotonin production, for which synthesis requires Tph1. This conditional system also revealed that PRLR signaling is required for the transient gestational expression of the transcription factor MafB within a subset of ß-cells during pregnancy. MafB deletion in maternal ß-cells also produced GDM, with inadequate ß-cell expansion accompanied by failure to induce PRLR-dependent target genes regulating ß-cell proliferation. These results unveil molecular roles for PRLR signaling in orchestrating the physiologic expansion of maternal ß-cells during pregnancy.


Subject(s)
Diabetes, Gestational/metabolism , Insulin-Secreting Cells/metabolism , MafB Transcription Factor/metabolism , Receptors, Prolactin/metabolism , Animals , Cell Proliferation/genetics , Cell Proliferation/physiology , Cells, Cultured , Cyclin A2/genetics , Cyclin B1/genetics , Cyclin B2/genetics , Cyclin D1/genetics , Cyclin D2/genetics , Diabetes, Gestational/physiopathology , Female , Forkhead Box Protein M1/genetics , Insulin/metabolism , MafB Transcription Factor/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Receptors, Prolactin/genetics , Serotonin/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
17.
Cell Mol Gastroenterol Hepatol ; 2(2): 189-209, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27066525

ABSTRACT

BACKGROUND & AIMS: The embryonic small intestinal epithelium is highly proliferative, and although much is known about mechanisms regulating proliferation in the adult intestine, the mechanisms controlling epithelial cell proliferation in the developing intestine are less clear. GATA4, a transcription factor that regulates proliferation in other developing tissues, is first expressed early in the developing gut in midgut endoderm. GATA4 function within midgut endoderm and the early intestinal epithelium has not been investigated. METHODS: Using Sonic Hedgehog Cre to eliminate GATA4 in the midgut endoderm of mouse embryos, we determined the impact of loss of GATA4 on intestinal development, including epithelial cell proliferation, between E9.5-E18.5. RESULTS: We found that intestinal length and width were decreased in GATA4 mutants compared with controls. GATA4-deficient intestinal epithelium contained fewer cells, and epithelial girth was decreased. We further observed a decreased proportion of proliferating cells at E10.5 and E11.5 in GATA4 mutants. We demonstrated that GATA4 binds to chromatin containing GATA4 consensus binding sites within Cyclin D2 (Ccnd2), Cyclin dependent kinase 6 (Cdk6), and Frizzled 5 (Fzd5). Moreover, Ccnd2, Cdk6, and Fzd5 transcripts were reduced at E11.5 in GATA4 mutant tissue. Villus morphogenesis was delayed, and villus structure was abnormal in GATA4 mutant intestine. CONCLUSIONS: Our data identify GATA4 as an essential regulator of early intestinal epithelial cell proliferation. We propose that GATA4 controls proliferation in part by directly regulating transcription of cell cycle mediators. Our data further suggest that GATA4 affects proliferation through transcriptional regulation of Fzd5, perhaps by influencing the response of the epithelium to WNT signaling.

18.
Diabetes ; 65(3): 687-98, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26631740

ABSTRACT

Transcription factor expression fluctuates during ß-cell ontogeny, and disruptions in this pattern can affect the development or function of those cells. Here we uncovered that murine endocrine pancreatic progenitors express high levels of the homeodomain transcription factor Prox1, whereas both immature and mature ß-cells scarcely express this protein. We also investigated if sustained Prox1 expression is incompatible with ß-cell development or maintenance using transgenic mouse approaches. We discovered that Prox1 upregulation in mature ß-cells has no functional consequences; in contrast, Prox1 overexpression in immature ß-cells promotes acute fasting hyperglycemia. Using a combination of immunostaining and quantitative and comparative gene expression analyses, we determined that Prox1 upregulation reduces proliferation, impairs maturation, and enables apoptosis in postnatal ß-cells. Also, we uncovered substantial deficiency in ß-cells that overexpress Prox1 of the key regulator of ß-cell maturation MafA, several MafA downstream targets required for glucose-stimulated insulin secretion, and genes encoding important components of FGF signaling. Moreover, knocking down PROX1 in human EndoC-ßH1 ß-cells caused increased expression of many of these same gene products. These and other results in our study indicate that reducing the expression of Prox1 is beneficial for the expansion and maturation of postnatal ß-cells.


Subject(s)
Cell Differentiation/genetics , Cell Proliferation/genetics , Homeodomain Proteins/genetics , Hyperglycemia/genetics , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Maf Transcription Factors, Large/genetics , RNA, Messenger/metabolism , Tumor Suppressor Proteins/genetics , Animals , Animals, Newborn , Cell Line , Chromatin Immunoprecipitation , Computer Simulation , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , Gene Knockdown Techniques , Glucose Tolerance Test , Humans , Insulin-Secreting Cells/cytology , Maf Transcription Factors, Large/metabolism , Mice , Mice, Transgenic , Real-Time Polymerase Chain Reaction
19.
BMC Res Notes ; 7: 902, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25495347

ABSTRACT

BACKGROUND: Studies of adult mice lacking either GATA4 or GATA6 in the small intestine demonstrate roles for these factors in small intestinal biology. Deletion of Gata4 in the adult mouse intestine revealed an essential role for GATA4 in jejunal function. Deletion of Gata6 in the adult mouse ileum alters epithelial cell types and ileal enterocyte gene expression. The effect of deletion of Gata4 or Gata6 alone during embryonic small intestinal development, however, has not been examined. We recently demonstrated that loss of both factors in double conditional knockout embryos causes severe defects in jejunal development. Therefore, the goal of this study is to provide phenotypic analysis of the small intestine of single Gata4 and Gata6 conditional knockout embryos. RESULTS: Villin-Cre was used to delete Gata4 or Gata6 in the developing intestinal epithelium. Elimination of either GATA4 or GATA6 in the jejunum, where these factors are co-expressed, caused changes in enterocyte and enteroendocrine cell gene expression. Ectopic expression of markers of the ileal-specific bile acid metabolism pathway was induced in GATA4-deficient jejunum but not in GATA6-deficient jejunum. A subtle increase in goblet cells was also identified in jejunum of both mutants. In GATA6-deficient embryonic ileum, villus length was altered, and enterocyte gene expression was perturbed including ectopic expression of the colon marker Car1. Goblet cells were increased, and enteroendocrine cells were decreased. CONCLUSIONS: Overall, we show that aspects of the phenotypes observed in the small intestine of adult Gata4 and Gata6 conditional knockout mice emerge during development. The effect of eliminating GATA6 from the developing ileum was greater than that of eliminating either GATA4 or GATA6 from the developing jejunum likely reflecting functional redundancy between these factors in the jejunum. Although GATA4 and GATA6 functions overlap, our data also suggest unique functions for GATA4 and GATA6 within the developing intestine. GATA4 likely operates independently of GATA6 within the jejunum to regulate jejunal versus ileal enterocyte identity and consequently jejunal physiology. GATA6 likely regulates enteroendocrine cell differentiation cell autonomously whereas GATA4 affects this population indirectly.


Subject(s)
GATA4 Transcription Factor/metabolism , GATA6 Transcription Factor/metabolism , Intestine, Small/growth & development , Animals , Intestine, Small/metabolism , Mice , Mice, Knockout
20.
Dev Biol ; 392(2): 283-94, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24929016

ABSTRACT

The intestinal epithelium performs vital roles in organ function by absorbing nutrients and providing a protective barrier. The zinc-finger containing transcription factors GATA4 and GATA6 regulate enterocyte gene expression and control regional epithelial cell identity in the adult intestinal epithelium. Although GATA4 and GATA6 are expressed in the developing intestine, loss of either factor alone during the period of epithelial morphogenesis and cytodifferentiation fails to disrupt these processes. Therefore, we tested the hypothesis that GATA4 and GATA6 function redundantly to control these aspects of intestinal development. We used Villin-Cre, which deletes specifically in the intestinal epithelium during the period of villus development and epithelial cytodifferentiation, to generate Gata4Gata6 double conditional knockout embryos. Mice lacking GATA4 and GATA6 in the intestinal epithelium died within 24h of birth. At E18.5, intestinal villus architecture and epithelial cell populations were altered. Enterocytes were lost, and goblet cells were increased. Proliferation was also increased in GATA4-GATA6 deficient intestinal epithelium. Although villus morphology appeared normal at E16.5, the first time at which both Gata4 and Gata6 were efficiently reduced, changes in expression of markers of enterocytes, goblet cells, and proliferative cells were detected. Moreover, goblet cell number was increased at E16.5. Expression of the Notch ligand Dll1 and the Notch target Olfm4 were reduced in mutant tissue indicating decreased Notch signaling. Finally, we found that GATA4 occupies chromatin near the Dll1 transcription start site suggesting direct regulation of Dll1 by GATA4. We demonstrate that GATA4 and GATA6 play an essential role in maintaining proper intestinal epithelial structure and in regulating intestinal epithelial cytodifferentiation. Our data highlight a novel role for GATA factors in fine tuning Notch signaling during intestinal epithelial development to repress goblet cell differentiation.


Subject(s)
Cell Differentiation/physiology , GATA4 Transcription Factor/metabolism , GATA6 Transcription Factor/metabolism , Gene Expression Regulation, Developmental/physiology , Intestinal Mucosa/embryology , Animals , Calcium-Binding Proteins , Cell Differentiation/genetics , Chromatin Immunoprecipitation , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental/genetics , Immunohistochemistry , Intercellular Signaling Peptides and Proteins/metabolism , Intestinal Mucosa/cytology , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Receptors, Notch/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL