Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 213(4): 107779, 2021 12.
Article in English | MEDLINE | ID: mdl-34474158

ABSTRACT

Shelled pteropods, known as sea butterflies, are a group of small gastropods that spend their entire lives swimming and drifting in the open ocean. They build thin shells of aragonite, a metastable polymorph of calcium carbonate. Pteropod shells have been shown to experience dissolution and reduced thickness with a decrease in pH and therefore represent valuable bioindicators to monitor the impacts of ocean acidification. Over the past decades, several studies have highlighted the striking diversity of shell microstructures in pteropods, with exceptional mechanical properties, but their evolution and future in acidified waters remains uncertain. Here, we revisit the body-of-work on pteropod biomineralization, focusing on shell microstructures and their evolution. The evolutionary history of pteropods was recently resolved, and thus it is timely to examine their shell microstructures in such context. We analyse new images of shells from fossils and recent species providing a comprehensive overview of their structural diversity. Pteropod shells are made of the crossed lamellar and prismatic microstructures common in molluscs, but also of curved nanofibers which are proposed to form a helical three-dimensional structure. Our analyses suggest that the curved fibres emerged before the split between coiled and uncoiled pteropods and that they form incomplete to multiple helical turns. The curved fibres are seen as an important trait in the adaptation to a planktonic lifestyle, giving maximum strength and flexibility to the pteropod thin and lightweight shells. Finally, we also elucidate on the candidate biomineralization genes underpinning the shell diversity in these important indicators of ocean health.


Subject(s)
Animal Shells/metabolism , Biodiversity , Biological Evolution , Biomineralization , Gastropoda/metabolism , Animal Shells/chemistry , Animal Shells/ultrastructure , Animals , Calcium Carbonate/chemistry , Fossils , Gastropoda/classification , Gastropoda/growth & development , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Seawater/chemistry , Species Specificity
2.
R Soc Open Sci ; 8(8): 202265, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34386247

ABSTRACT

The atlantid heteropods represent the only predatory, aragonite shelled zooplankton. Atlantid shell production is likely to be sensitive to ocean acidification (OA), and yet we know little about their mechanisms of calcification, or their response to changing ocean chemistry. Here, we present the first study into calcification and gene expression effects of short-term OA exposure on juvenile atlantids across three pH scenarios: mid-1960s, ambient and 2050 conditions. Calcification and gene expression indicate a distinct response to each treatment. Shell extension and shell volume were reduced from the mid-1960s to ambient conditions, suggesting that calcification is already limited in today's South Atlantic. However, shell extension increased from ambient to 2050 conditions. Genes involved in protein synthesis were consistently upregulated, whereas genes involved in organismal development were downregulated with decreasing pH. Biomineralization genes were upregulated in the mid-1960s and 2050 conditions, suggesting that any deviation from ambient carbonate chemistry causes stress, resulting in rapid shell growth. We conclude that atlantid calcification is likely to be negatively affected by future OA. However, we also found that plentiful food increased shell extension and shell thickness, and so synergistic factors are likely to impact the resilience of atlantids in an acidifying ocean.

3.
Proc Natl Acad Sci U S A ; 117(41): 25609-25617, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32973093

ABSTRACT

Pteropods are a group of planktonic gastropods that are widely regarded as biological indicators for assessing the impacts of ocean acidification. Their aragonitic shells are highly sensitive to acute changes in ocean chemistry. However, to gain insight into their potential to adapt to current climate change, we need to accurately reconstruct their evolutionary history and assess their responses to past changes in the Earth's carbon cycle. Here, we resolve the phylogeny and timing of pteropod evolution with a phylogenomic dataset (2,654 genes) incorporating new data for 21 pteropod species and revised fossil evidence. In agreement with traditional taxonomy, we recovered molecular support for a division between "sea butterflies" (Thecosomata; mucus-web feeders) and "sea angels" (Gymnosomata; active predators). Molecular dating demonstrated that these two lineages diverged in the early Cretaceous, and that all main pteropod clades, including shelled, partially-shelled, and unshelled groups, diverged in the mid- to late Cretaceous. Hence, these clades originated prior to and subsequently survived major global change events, including the Paleocene-Eocene Thermal Maximum (PETM), the closest analog to modern-day ocean acidification and warming. Our findings indicate that planktonic aragonitic calcifiers have shown resilience to perturbations in the Earth's carbon cycle over evolutionary timescales.


Subject(s)
Biological Evolution , Carbon Cycle/physiology , Climate Change , Gastropoda , Plankton , Animals , Calcification, Physiologic/physiology , Fossils , Gastropoda/classification , Gastropoda/genetics , Gastropoda/physiology , Hydrogen-Ion Concentration , Phylogeny , Plankton/classification , Plankton/genetics , Plankton/physiology
4.
BMC Evol Biol ; 20(1): 124, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32957910

ABSTRACT

BACKGROUND: The aragonite shelled, planktonic gastropod family Atlantidae (shelled heteropods) is likely to be one of the first groups to be impacted by imminent ocean changes, including ocean warming and ocean acidification. With a fossil record spanning at least 100 Ma, atlantids have experienced and survived global-scale ocean changes and extinction events in the past. However, the diversification patterns and tempo of evolution in this family are largely unknown. RESULTS: Based on a concatenated maximum likelihood phylogeny of three genes (cytochrome c oxidase subunit 1 mitochondrial DNA, 28S and 18S ribosomal rRNA) we show that the three extant genera of the family Atlantidae, Atlanta, Protatlanta and Oxygyrus, form monophyletic groups. The genus Atlanta is split into two groups, one exhibiting smaller, well ornamented shells, and the other having larger, less ornamented shells. The fossil record, in combination with a fossil-calibrated phylogeny, suggests that large scale atlantid extinction was accompanied by considerable and rapid diversification over the last 25 Ma, potentially driven by vicariance events. CONCLUSIONS: Now confronted with a rapidly changing modern ocean, the ability of atlantids to survive past global change crises gives some optimism that they may be able to persist through the Anthropocene.


Subject(s)
Evolution, Molecular , Fossils , Gastropoda , Phylogeny , Animals , Gastropoda/classification , Gastropoda/genetics , Hydrogen-Ion Concentration , Seawater/chemistry
5.
Zookeys ; 899: 59-84, 2019.
Article in English | MEDLINE | ID: mdl-31871402

ABSTRACT

Atlantid heteropods are a family of holoplanktonic marine gastropods that occur primarily in tropical and subtropical latitudes. Atlantids bear a delicate aragonitic shell (<14 mm) and live in the upper ocean, where ocean acidification and ocean warming have a pronounced effect. Therefore, atlantids are likely to be sensitive to these ocean changes. However, we lack sufficiently detailed information on atlantid taxonomy and biogeography, which is needed to gain a deeper understanding of the consequences of a changing ocean. To date, atlantid taxonomy has mainly relied on morphometrics and shell ornamentation, but recent molecular work has highlighted hidden diversity. This study uses an integrated approach in a global analysis of biogeography, variation in shell morphology and molecular phylogenies based on three genes (CO1, 28S and 18S) to resolve the species boundaries within the Atlanta brunnea group. Results identify a new species, Atlanta vanderspoeli, from the Equatorial and South Pacific Ocean, and suggest that individuals of A. brunnea living in the Atlantic Ocean are an incipient species. Our results provide an important advance in atlantid taxonomy and will enable identification of these species in future studies of living and fossil plankton.

6.
Prog Oceanogr ; 160: 1-25, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29479121

ABSTRACT

The atlantid heteropods are regularly encountered, but rarely studied marine planktonic gastropods. Relying on a small (<14 mm), delicate aragonite shell and living in the upper ocean means that, in common with pteropods, atlantids are likely to be affected by imminent ocean changes. Variable shell morphology and widespread distributions indicate that the family is more diverse than the 23 currently known species. Uncovering this diversity is fundamental to determining the distribution of atlantids and to understanding their environmental tolerances. Here we present phylogenetic analyses of all described species of the family Atlantidae using 437 new and 52 previously published cytochrome c oxidase subunit 1 mitochondrial DNA (mtCO1) sequences. Specimens and published sequences were gathered from 32 Atlantic Ocean stations, 14 Indian Ocean stations and 21 Pacific Ocean stations between 35°N and 43°S. DNA barcoding and Automatic Barcode Gap Discovery (ABGD) proved to be valuable tools for the identification of described atlantid species, and also revealed ten additional distinct clades, suggesting that the diversity within this family has been underestimated. Only two of these clades displayed obvious morphological characteristics, demonstrating that much of the newly discovered diversity is hidden from morphology-based identification techniques. Investigation of six large atlantid collections demonstrated that 61% of previously described (morpho) species have a circumglobal distribution. Of the remaining 39%, two species were restricted to the Atlantic Ocean, five occurred in the Indian and Pacific oceans, one species was only found in the northeast Pacific Ocean, and one occurred only in the Southern Subtropical Convergence Zone. Molecular analysis showed that seven of the species with wide distributions were comprised of two or more clades that occupied distinct oceanographic regions. These distributions may suggest narrower environmental tolerances than the described morphospecies. Results provide an updated biogeography and mtCO1 reference dataset of the Atlantidae that may be used to identify atlantid species and provide a first step in understanding their evolutionary history and accurate distribution, encouraging the inclusion of this family in future plankton research.

7.
Zookeys ; (604): 13-30, 2016.
Article in English | MEDLINE | ID: mdl-27551204

ABSTRACT

The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastropods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The aragonite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidification and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the effects of a changing ocean. Integrated morphological and molecular approaches to taxonomy have been employed to improve the assessment of species boundaries, which give a more accurate picture of species distributions. Here a new species of atlantid heteropod is described based on shell morphology, DNA barcoding of the Cytochrome Oxidase I gene, and biogeography. All specimens of Atlanta ariejansseni sp. n. were collected from the Southern Subtropical Convergence Zone of the Atlantic and Indo-Pacific oceans suggesting that this species has a very narrow latitudinal distribution (37-48°S). Atlanta ariejansseni sp. n. was found to be relatively abundant (up to 2.3 specimens per 1000 m(3) water) within this narrow latitudinal range, implying that this species has adapted to the specific conditions of the Southern Subtropical Convergence Zone and has a high tolerance to the varying ocean parameters in this region.

SELECTION OF CITATIONS
SEARCH DETAIL
...