Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1369295, 2024.
Article in English | MEDLINE | ID: mdl-38650940

ABSTRACT

Introduction: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) presents substantial challenges in patient care due to its intricate multisystem nature, comorbidities, and global prevalence. The heterogeneity among patient populations, coupled with the absence of FDA-approved diagnostics and therapeutics, further complicates research into disease etiology and patient managment. Integrating longitudinal multi-omics data with clinical, health,textual, pharmaceutical, and nutraceutical data offers a promising avenue to address these complexities, aiding in the identification of underlying causes and providing insights into effective therapeutics and diagnostic strategies. Methods: This study focused on an exceptionally severe ME/CFS patient with hypermobility spectrum disorder (HSD) during a period of marginal symptom improvements. Longitudinal cytokine profiling was conducted alongside the collection of extensive multi-modal health data to explore the dynamic nature of symptoms, severity, triggers, and modifying factors. Additionally, an updated severity assessment platform and two applications, ME-CFSTrackerApp and LexiTime, were introduced to facilitate real-time symptom tracking and enhance patient-physician/researcher communication, and evaluate response to medical intervention. Results: Longitudinal cytokine profiling revealed the significance of Th2-type cytokines and highlighted synergistic activities between mast cells and eosinophils, skewing Th1 toward Th2 immune responses in ME/CFS pathogenesis, particularly in cognitive impairment and sensorial intolerance. This suggests a potentially shared underlying mechanism with major ME/CFS comorbidities such as HSD, Mast cell activation syndrome, postural orthostatic tachycardia syndrome (POTS), and small fiber neuropathy. Additionally, the data identified potential roles of BCL6 and TP53 pathways in ME/CFS etiology and emphasized the importance of investigating adverse reactions to medication and supplements and drug interactions in ME/CFS severity and progression. Discussion: Our study advocates for the integration of longitudinal multi-omics with multi-modal health data and artificial intelligence (AI) techniques to better understand ME/CFS and its major comorbidities. These findings highlight the significance of dysregulated Th2-type cytokines in patient stratification and precision medicine strategies. Additionally, our results suggest exploring the use of low-dose drugs with partial agonist activity as a potential avenue for ME/CFS treatment. This comprehensive approach emphasizes the importance of adopting a patient-centered care approach to improve ME/CFS healthcare management, disease severity assessment, and personalized medicine. Overall, these findings contribute to our understanding of ME/CFS and offer avenues for future research and clinical practice.


Subject(s)
Cytokines , Severity of Illness Index , Adult , Humans , Male , Cytokines/metabolism
2.
bioRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711589

ABSTRACT

The geroscience hypothesis states that a therapy that prevents the underlying aging process should prevent multiple aging related diseases. The mTOR (mechanistic target of rapamycin)/insulin and NAD+ (nicotinamide adenine dinucleotide) pathways are two of the most validated aging pathways. Yet, it's largely unclear how they might talk to each other in aging. In genome-wide CRISPRa screening with a novel class of N-O-Methyl-propanamide-containing compounds we named BIOIO-1001, we identified lipid metabolism centering on SIRT3 as a point of intersection of the mTOR/insulin and NAD+ pathways. In vivo testing indicated that BIOIO-1001 reduced high fat, high sugar diet-induced metabolic derangements, inflammation, and fibrosis, each being characteristic of non-alcoholic steatohepatitis (NASH). An unbiased screen of patient datasets suggested a potential link between the anti-inflammatory and anti-fibrotic effects of BIOIO-1001 in NASH models to those in amyotrophic lateral sclerosis (ALS). Directed experiments subsequently determined that BIOIO-1001 was protective in both sporadic and familial ALS models. Both NASH and ALS have no treatments and suffer from a lack of convenient biomarkers to monitor therapeutic efficacy. A potential strength in considering BIOIO-1001 as a therapy is that the blood biomarker that it modulates, namely plasma triglycerides, can be conveniently used to screen patients for responders. More conceptually, to our knowledge BIOIO-1001 is a first therapy that fits the geroscience hypothesis by acting on multiple core aging pathways and that can alleviate multiple conditions after they have set in.

SELECTION OF CITATIONS
SEARCH DETAIL
...