Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Res ; 13(1): 50, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231229

ABSTRACT

BACKGROUND: 68 Ga-PSMA PET is the leading prostate cancer imaging technique, but the image quality remains noisy and could be further improved using an artificial intelligence-based denoising algorithm. To address this issue, we analyzed the overall quality of reprocessed images compared to standard reconstructions. We also analyzed the diagnostic performances of the different sequences and the impact of the algorithm on lesion intensity and background measures. METHODS: We retrospectively included 30 patients with biochemical recurrence of prostate cancer who had undergone 68 Ga-PSMA-11 PET-CT. We simulated images produced using only a quarter, half, three-quarters, or all of the acquired data material reprocessed using the SubtlePET® denoising algorithm. Three physicians with different levels of experience blindly analyzed every sequence and then used a 5-level Likert scale to assess the series. The binary criterion of lesion detectability was compared between series. We also compared lesion SUV, background uptake, and diagnostic performances of the series (sensitivity, specificity, accuracy). RESULTS: VPFX-derived series were classified differently but better than standard reconstructions (p < 0.001) using half the data. Q.Clear series were not classified differently using half the signal. Some series were noisy but had no significant effect on lesion detectability (p > 0.05). The SubtlePET® algorithm significantly decreased lesion SUV (p < 0.005) and increased liver background (p < 0.005) and had no substantial effect on the diagnostic performance of each reader. CONCLUSION: We show that the SubtlePET® can be used for 68 Ga-PSMA scans using half the signal with similar image quality to Q.Clear series and superior quality to VPFX series. However, it significantly modifies quantitative measurements and should not be used for comparative examinations if standard algorithm is applied during follow-up.

2.
Eur Radiol ; 32(12): 8394-8403, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35726103

ABSTRACT

OBJECTIVES: To develop a deep-learning algorithm for anterior cruciate ligament (ACL) tear detection and to compare its accuracy using two external datasets. METHODS: A database of 19,765 knee MRI scans (17,738 patients) issued from different manufacturers and magnetic fields was used to build a deep learning-based ACL tear detector. Fifteen percent showed partial or complete ACL rupture. Coronal and sagittal fat-suppressed proton density or T2-weighted sequences were used. A Natural Language Processing algorithm was used to automatically label reports associated with each MRI exam. We compared the accuracy of our model on two publicly available external datasets: MRNet, Bien et al, USA (PLoS Med 15:e1002699, 2018); and KneeMRI, Stajduhar et al, Croatia (Comput Methods Prog Biomed 140:151-164, 2017). Receptor operating characteristics (ROC) curves, area under the curve (AUC), sensitivity, specificity, and accuracy were used to evaluate our model. RESULTS: Our neural networks achieved an AUC value of 0.939 for detection of ACL tears, with a sensitivity of 87% (0.875) and a specificity of 91% (0.908). After retraining our model on Bien dataset and Stajduhar dataset, our algorithm achieved AUC of 0.962 (95% CI 0.930-0.988) and 0.922 (95% CI 0.875, 0.962) respectively. Sensitivity, specificity, and accuracy were respectively 85% (95% CI 75-94%, 0.852), 89% (95% CI 82-97%, 0.894), 0.875 (95% CI 0.817-0.933) for Bien dataset, and 68% (95% CI 54-81%, 0.681), 93% (95% CI 89-97%, 0.934), and 0.870 (95% CI 0.821-0.913) for Stajduhar dataset. CONCLUSION: Our algorithm showed high performance in the detection of ACL tears with AUC on two external datasets, demonstrating its generalizability on different manufacturers and populations. This study shows the performance of an algorithm for detecting anterior cruciate ligament tears with an external validation on populations from countries and continents different from the study population. KEY POINTS: • An algorithm for detecting anterior cruciate ligament ruptures was built from a large dataset of nearly 20,000 MRI with AUC values of 0.939, sensitivity of 87%, and specificity of 91%. • This algorithm was tested on two external populations from different other countries: a dataset from an American population and a dataset from a Croatian population. Performance remains high on these two external validation populations (AUC of 0.962 and 0.922 respectively).


Subject(s)
Anterior Cruciate Ligament Injuries , Deep Learning , Humans , Anterior Cruciate Ligament , Anterior Cruciate Ligament Injuries/diagnostic imaging , Arthroscopy , Magnetic Resonance Imaging/methods , Retrospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL