Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 2593, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788320

ABSTRACT

Little is known about the biology of cold-water corals (CWCs), let alone the reproduction and early life stages of these important deep-sea foundation species. Through a three-year aquarium experiment, we described the reproductive mode, larval release periodicity, planktonic stage, larval histology, metamorphosis and post-larval development of the solitary scleractinian CWC Caryophyllia (Caryophyllia) huinayensis collected in Comau Fjord, Chilean Patagonia. We found that C. huinayensis is a brooder releasing 78.4 ± 65.9 (mean ± standard deviation [SD]) planula larvae throughout the year, a possible adaptation to low seasonality. Planulae had a length of 905 ± 114 µm and showed a well-developed gastrovascular system. After 8 ± 9.3 days (d), the larvae settled, underwent metamorphosis and developed the first set of tentacles after 2 ± 1.5 d. Skeletogenesis, zooplankton feeding and initiation of the fourth set of tentacles started 5 ± 2.1 d later, 21 ± 12.9 d, and 895 ± 45.9 d after settlement, respectively. Our study shows that the ontogenetic timing of C. huinayensis is comparable to that of some tropical corals, despite lacking zooxanthellae.


Subject(s)
Anthozoa , Animals , Water , Reproduction , Metamorphosis, Biological , Larva
2.
Sci Rep ; 11(1): 22439, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789855

ABSTRACT

In the Gulf of Alaska, commercially harvested fish species utilize habitats dominated by red tree corals (Primnoa pacifica) for shelter, feeding, and nurseries, but recent studies hint that environmental conditions may be interrupting the reproductive lifecycle of the corals. The North Pacific has experienced persistent and extreme thermal variability in recent years and this pattern is predicted to continue in coming decades. Recent discovery of deep-water emerged coral populations in Southeast Alaska fjords provided opportunity for detailed life-history studies and comparison to corals in managed habitats on the continental shelf. Here we show that sperm from deep colonies develops completely, but in shallow colonies, sperm development is prematurely halted, likely preventing successful production of larvae. We hypothesize that the divergence is due to differing temperature regimes presently experienced by the corals. Compared to deep populations below the thermocline, shallow populations experience much greater seasonal thermal variability and annual pulses of suspected near-lethal temperatures that appear to interrupt the production of viable gametes. The unique opportunity to comprehensively study emerged populations presently affected by thermal stress provides advance warning of the possible fate of deep corals in the Gulf of Alaska that will soon experience similar ocean conditions.


Subject(s)
Anthozoa/physiology , Bays , Coral Reefs , Estuaries , Global Warming , Spermatogenesis/physiology , Temperature , Alaska , Animals , Female , Male , Oocytes/physiology , Spermatozoa/physiology
3.
PLoS One ; 15(8): e0236945, 2020.
Article in English | MEDLINE | ID: mdl-32750086

ABSTRACT

Glacier Bay National Park and Preserve (GBNPP) in Southeast Alaska is a system of glaciated fjords with a unique and recent history of deglaciation. As such, it can serve as a natural laboratory for studying patterns of distribution in marine communities with proximity to glacial influence. In order to examine the changes in fjord-based coral communities, underwater photo-quadrats were collected during multipurpose dives with a remotely operated vehicle (ROV) in March of 2016. Ten sites were chosen to represent the geochronological and oceanographic gradients present in GBNPP. Each site was surveyed vertically between 100 and 420 meters depth and photo-quadrats were extracted from the video strip transects for analysis. The ROV was equipped with onboard CTD which recorded environmental data (temperature and salinity), in order to confirm the uniformity of these characteristics at depth across the fjords. The percent cover and diversity of species were lowest near the glaciated heads of the fjords and highest in the Central Channel and at the mouths of the fjords. Diversity is highest where characteristics such as low sedimentation and increased tidal currents are predominant. The diverse communities at the mouths of the fjords and in the Central Channel were dominated by large colonies of the Red Tree Coral, Primnoa pacifica, as well as sponges, brachiopods, multiple species of cnidarians, echinoderms, molluscs and arthropods. The communities at the heads of the fjords were heavily dominated by pioneering species such as brachiopoda, hydrozoan turf, the encrusting stoloniferan coral Sarcodyction incrustans, and smaller colonies of P. pacifica. This research documents a gradient of species dominance from the Central Channel to the heads of the glaciated fjords, which is hypothesized to be driven by a combination of physical and biological factors such as glacial sedimentation, nutrient availability, larval dispersal, and competition.


Subject(s)
Anthozoa , Ecosystem , Estuaries , Alaska , Animals , Arthropods , Cnidaria , Echinodermata , Invertebrates , Mollusca
4.
PLoS One ; 14(4): e0203976, 2019.
Article in English | MEDLINE | ID: mdl-30998686

ABSTRACT

Primnoa pacifica is the most ecologically important coral species in the North Pacific Ocean and provides important habitat for commercially important fish and invertebrates. Ocean acidification (OA) is more rapidly increasing in high-latitude seas because anthropogenic CO2 uptake is greater in these regions. This is due to the solubility of CO2 in cold water and the reduced buffering capacity and low alkalinity of colder waters. Primnoa pacifica colonies were cultured for six to nine months in either pH 7.55 (predicted Year 2100 pH levels) or pH 7.75 (Control). Oocyte development and fecundity in females, and spermatocyst stages in males were measured to assess the effects of pH on gametogenesis. Oocyte diameters were 13.6% smaller and fecundities were 30.9% lower in the Year 2100 samples. A higher proportion of vitellogenic oocytes (65%) were also reabsorbed (oosorption) in the Year 2100 treatment. Lower pH appeared to advance the process of spermatogenesis with a higher percentage of later stage sperm compared to Control. There was a laboratory effect observed in all measurement types, however this only significantly affected the analyses of spermatogenesis. Based on the negative effect of acidification on oogenesis and increased rate of oosorption, successful spawning could be unlikely in an acidified ocean. If female gametes were spawned, they are likely to be insufficiently equipped to develop normally, based on the decreased overall size and therefore subsequent limited amount of lipids necessary for successful larval development.


Subject(s)
Anthozoa/metabolism , Oocytes/metabolism , Oogenesis , Spermatocytes/metabolism , Spermatogenesis , Animals , Anthozoa/cytology , Carbon Dioxide/metabolism , Female , Hydrogen-Ion Concentration , Male , Oocytes/cytology , Spermatocytes/cytology
5.
Sci Rep ; 8(1): 12383, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30120375

ABSTRACT

Cold-water corals provide critical habitats for a multitude of marine species, but are understudied relative to tropical corals. Primnoa pacifica is a cold-water coral prevalent throughout Alaskan waters, while another species in the genus, Primnoa resedaeformis, is widely distributed in the Atlantic Ocean. This study examined the V4-V5 region of the 16S rRNA gene after amplifying and pyrosequencing bacterial DNA from samples of these species. Key differences between the two species' microbiomes included a robust presence of bacteria belonging to the Chlamydiales order in most of the P. pacifica samples, whereas no more than 2% of any microbial community from P. resedaeformis comprised these bacteria. Microbiomes of P. resedaeformis exhibited higher diversity than those of P. pacifica, and the two species largely clustered separately in a principal coordinate analysis. Comparison of P. resedaeformis microbiomes from samples collected in two submarine canyons revealed a significant difference between locations. This finding mirrored significant genetic differences among the P. resedaeformis from the two canyons based upon population genetic analysis of microsatellite loci. This study presents the first report of microbiomes associated with these two coral species.


Subject(s)
Anthozoa/genetics , Anthozoa/microbiology , Biodiversity , Genotype , Microbiota , Animals , Bacteria/classification , Bacteria/genetics , Computational Biology/methods , Metagenome , Metagenomics/methods , Microsatellite Repeats
6.
PLoS One ; 9(4): e90893, 2014.
Article in English | MEDLINE | ID: mdl-24770675

ABSTRACT

The red tree coral Primnoa pacifica is an important habitat forming octocoral in North Pacific waters. Given the prominence of this species in shelf and upper slope areas of the Gulf of Alaska where fishing disturbance can be high, it may be able to sustain healthy populations through adaptive reproductive processes. This study was designed to test this hypothesis, examining reproductive mode, seasonality and fecundity in both undamaged and simulated damaged colonies over the course of 16 months using a deepwater-emerged population in Tracy Arm Fjord. Females within the population developed asynchronously, though males showed trends of synchronicity, with production of immature spermatocysts heightened in December/January and maturation of gametes in the fall months. Periodicity of individuals varied from a single year reproductive event to some individuals taking more than the 16 months sampled to produce viable gametes. Multiple stages of gametes occurred in polyps of the same colony during most sampling periods. Mean oocyte size ranged from 50 to 200 µm in any season, and maximum oocyte size (802 µm) suggests a lecithotrophic larva. No brooding larvae were found during this study, though unfertilized oocytes were found adhered to the outside of polyps, where they are presumably fertilized. This species demonstrated size-dependent reproduction, with gametes first forming in colonies over 42-cm length, and steady oocyte sizes being achieved after reaching 80-cm in length. The average fecundity was 86 (± 12) total oocytes per polyp, and 17 (± 12) potential per polyp fecundity. Sub-lethal injury by removing 21-40% of colony tissue had no significant reproductive response in males or females over the course of this study, except for a corresponding loss in overall colony fecundity. The reproductive patterns and long gamete generation times observed in this study indicate that recruitment events are likely to be highly sporadic in this species increasing its vulnerability to anthropogenic disturbances.


Subject(s)
Anthozoa/physiology , Alaska , Animals , Anthozoa/cytology , Cell Size , Female , Fertility , Male , Oocytes/physiology , Reproduction , Seasons , Sex Ratio , Spermatocytes/physiology
7.
Biol Bull ; 226(1): 8-18, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24648203

ABSTRACT

Environmental conditions can influence the physiology of marine organisms and have important implications for their reproductive performance and capacity to supply new recruits. This study examined the seasonal reproductive patterns of the coral Montipora capitata in habitats exposed to different sedimentation regimes. Although M. capitata is a main reef-building coral in the Hawaiian Archipelago, little is known about the gametogenic cycle and reproductive ecology of this important species. Our results indicate that gamete production in M. capitata is a resilient process; no differences in gamete development or fecundity were observed among sites with very different sedimentation regimes. The gametogenic cycle of M. capitata lasts between 10 and 11 months, with spawning occurring over 3-5 months during warmer months (May-September). Oocytes were found throughout the year, but spermatocysts were only found April-August. The largest increases in oocyte size occurred during February to May, the months when solar radiation increased rapidly. The largest variation in oocyte sizes was found during July and August; during this period individual colonies contained mature oocytes for immediate spawning and new oocytes being formed for spawning the next year. The capacity of M. capitata to reproduce in areas with high sedimentation is an interesting finding highlighting the potential of the species for acclimatization, adaptation, or both. Despite this optimistic finding, the management of terrestrial runoff and the restoration of habitat quality for corals remains a top priority to ensure the renewal and maintenance of coral populations.


Subject(s)
Anthozoa/physiology , Geologic Sediments , Animals , Environment , Gametogenesis/physiology , Reproduction/physiology
8.
PLoS One ; 6(1): e16153, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21283585

ABSTRACT

Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions.


Subject(s)
Anthozoa , Cold Temperature , Ecosystem , Seawater , Animals , Photography
SELECTION OF CITATIONS
SEARCH DETAIL