Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
3.
Biochem Pharmacol ; 214: 115679, 2023 08.
Article in English | MEDLINE | ID: mdl-37399950

ABSTRACT

Nowadays, combination antiretroviral therapy (cART) is the standard treatment for all people with human immunodeficiency virus (HIV-1). Although cART is effective in treating productive infection, it does not eliminate latent reservoirs of the virus. This leads to lifelong treatment associated with the occurrence of side effects and the development of drug-resistant HIV-1. Suppression of viral latency is therefore the major hurdle to HIV-1 eradication. Multiple mechanisms exist to regulate viral gene expression and drive the transcriptional and post-transcriptional establishment of latency. Epigenetic processes are amongst the most studied mechanisms influencing both productive and latent infection states. The central nervous system (CNS) represents a key anatomical sanctuary for HIV and is the focal point of considerable research efforts. However, limited and difficult access to CNS compartments makes understanding the HIV-1 infection state in latent brain cells such as microglial cells, astrocytes, and perivascular macrophages challenging. This review examines the latest advances on epigenetic transformations involved in CNS viral latency and targeting of brain reservoirs. Evidence from clinical studies as well as in vivo and in vitro models of HIV-1 persistence in the CNS will be discussed, with a special focus on recent 3D in vitro models such as human brain organoids. Finally, the review will address therapeutic considerations for targeting latent CNS reservoirs.


Subject(s)
HIV Infections , HIV-1 , Humans , Central Nervous System , HIV Infections/drug therapy , Virus Latency , Brain
5.
Methods Mol Biol ; 2615: 57-75, 2023.
Article in English | MEDLINE | ID: mdl-36807784

ABSTRACT

For most eukaryotes, sequencing and assembly of the mitochondrial DNA (mtDNA) is possible by starting the analysis from total cellular DNA, but the exploration of the mtDNA of plants is more challenging because of the low copy number, limited sequence conservation, and complex structure of the mtDNA. The very large size of the nuclear genome of many plant species and the very high ploidy of the plastidial genome further complicate the analysis, sequencing, and assembly of plant mitochondrial genomes. An enrichment of mtDNA is therefore necessary. For this, plant mitochondria are purified prior to mtDNA extraction and purification. The relative enrichment in mtDNA can be assessed by qPCR, while the absolute enrichment can be deduced from the proportion of NGS reads mapping to each of the three genomes of the plant cell. Here we present methods for mitochondrial purification and mtDNA extraction applied to different plant species and tissues, and compare the mtDNA enrichment obtained with the different procedures.


Subject(s)
DNA, Mitochondrial , Genome, Mitochondrial , DNA, Mitochondrial/genetics , Mitochondria/genetics , Plants/genetics , Genome, Plant , Sequence Analysis, DNA/methods
6.
Biochem Pharmacol ; 197: 114893, 2022 03.
Article in English | MEDLINE | ID: mdl-34968484

ABSTRACT

Suicide Gene Therapy (SGT) aims to introduce a gene encoding either a toxin or an enzyme making the targeted cell more sensitive to chemotherapy. SGT represents an alternative approach to combat pathologies where conventional treatments fail such as pancreatic cancer or the high-grade glioblastoma which are still desperately lethal. We review the possibility to use SGT to treat these cancers which have shown promising results in vitro and in preclinical trials. However, SGT has so far failed in phase III clinical trials thus further improvements are awaited. We can now take advantages of the many advances made in SGT for treating cancer to combat other pathologies such as HIV-1 infection. In the review we also discuss the feasibility to add SGT to the therapeutic arsenal used to cure HIV-1-infected patients. Indeed, preliminary results suggest that both productive and latently infected cells are targeted by the SGT. In the last section, we address the limitations of this approach and how we might improve it.


Subject(s)
Complementary Therapies/methods , Genes, Transgenic, Suicide/genetics , Genetic Therapy/methods , HIV Infections/genetics , HIV-1/genetics , Neoplasms/genetics , Animals , Complementary Therapies/trends , Genetic Therapy/trends , HIV Infections/therapy , Humans , Neoplasms/therapy
7.
Virol J ; 18(1): 107, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059075

ABSTRACT

Reducing the pool of HIV-1 reservoirs in patients is a must to achieve functional cure. The most prominent HIV-1 cell reservoirs are resting CD4 + T cells and brain derived microglial cells. Infected microglial cells are believed to be the source of peripheral tissues reseedings and the emergence of drug resistance. Clearing infected cells from the brain is therefore crucial. However, many characteristics of microglial cells and the central nervous system make extremely difficult their eradication from brain reservoirs. Current methods, such as the "shock and kill", the "block and lock" and gene editing strategies cannot override these difficulties. Therefore, new strategies have to be designed when considering the elimination of brain reservoirs. We set up an original gene suicide strategy using latently infected microglial cells as model cells. In this paper we provide proof of concept of this strategy.


Subject(s)
Brain/virology , Genes, Transgenic, Suicide , HIV Infections , HIV-1 , Virus Latency , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Gene Editing , Humans , Microglia/virology
8.
Viruses ; 13(2)2021 02 23.
Article in English | MEDLINE | ID: mdl-33672333

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China at the end of 2019 causing a large global outbreak. As treatments are of the utmost importance, drug repurposing embodies a rich and rapid drug discovery landscape, where candidate drug compounds could be identified and optimized. To this end, we tested seven compounds for their ability to reduce replication of human coronavirus (HCoV)-229E, another member of the coronavirus family. Among these seven drugs tested, four of them, namely rapamycin, disulfiram, loperamide and valproic acid, were highly cytotoxic and did not warrant further testing. In contrast, we observed a reduction of the viral titer by 80% with resveratrol (50% effective concentration (EC50) = 4.6 µM) and lopinavir/ritonavir (EC50 = 8.8 µM) and by 60% with chloroquine (EC50 = 5 µM) with very limited cytotoxicity. Among these three drugs, resveratrol was less cytotoxic (cytotoxic concentration 50 (CC50) = 210 µM) than lopinavir/ritonavir (CC50 = 102 µM) and chloroquine (CC50 = 67 µM). Thus, among the seven drugs tested against HCoV-229E, resveratrol demonstrated the optimal antiviral response with low cytotoxicity with a selectivity index (SI) of 45.65. Similarly, among the three drugs with an anti-HCoV-229E activity, namely lopinavir/ritonavir, chloroquine and resveratrol, only the latter showed a reduction of the viral titer on SARS-CoV-2 with reduced cytotoxicity. This opens the door to further evaluation to fight Covid-19.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 229E, Human/drug effects , Resveratrol/pharmacology , Ritonavir/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Cell Line , Chloroquine/pharmacology , Coronavirus 229E, Human/physiology , Drug Repositioning , Humans , Lopinavir/pharmacology , Male , SARS-CoV-2/physiology , Viral Load
9.
Sci Rep ; 11(1): 2692, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514850

ABSTRACT

HIV-1 latency generates reservoirs that prevent viral eradication by the current therapies. To find strategies toward an HIV cure, detailed understandings of the molecular mechanisms underlying establishment and persistence of the reservoirs are needed. The cellular transcription factor KAP1 is known as a potent repressor of gene transcription. Here we report that KAP1 represses HIV-1 gene expression in myeloid cells including microglial cells, the major reservoir of the central nervous system. Mechanistically, KAP1 interacts and colocalizes with the viral transactivator Tat to promote its degradation via the proteasome pathway and repress HIV-1 gene expression. In myeloid models of latent HIV-1 infection, the depletion of KAP1 increased viral gene elongation and reactivated HIV-1 expression. Bound to the latent HIV-1 promoter, KAP1 associates and cooperates with CTIP2, a key epigenetic silencer of HIV-1 expression in microglial cells. In addition, Tat and CTIP2 compete for KAP1 binding suggesting a dynamic modulation of the KAP1 cellular partners upon HIV-1 infection. Altogether, our results suggest that KAP1 contributes to the establishment and the persistence of HIV-1 latency in myeloid cells.


Subject(s)
Gene Expression Regulation, Viral , HIV Infections/metabolism , HIV-1/metabolism , Myeloid Cells/metabolism , Transcription, Genetic , Tripartite Motif-Containing Protein 28/metabolism , HEK293 Cells , HIV Infections/genetics , HIV-1/genetics , Humans , Myeloid Cells/virology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tripartite Motif-Containing Protein 28/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
10.
Biochem Pharmacol ; 180: 114128, 2020 10.
Article in English | MEDLINE | ID: mdl-32619426

ABSTRACT

Back in 1989 some studies have shown that the viral protein Vpr was dispensable for HIV-1 replication in vitro. From then the concept of accessory or auxiliary protein for Vpr has emerged and it is still used to date. However, Vpr soon appeared to be very important for in vivo virus spread and pathogenesis. Vpr has been involved in many biological functions including regulation of reverse transcriptase activity, the nuclear import of the pre-integration complex (PIC), HIV-1 transcription, gene splicing, apoptosis and in cell cycle arrest. Thus, we might rather consider Vpr as a true virulence factor instead of just an accessory factor. At present, Vpr can be regarded as a potential and promising target in different strategies aiming to fight infected cells including latently infected cells.


Subject(s)
Polymorphism, Genetic , Transcription, Genetic , Virulence Factors/genetics , vpr Gene Products, Human Immunodeficiency Virus/genetics , Amino Acid Sequence , Apoptosis/genetics , Cell Cycle/genetics , Disease Progression , HIV Infections/immunology , HIV Infections/virology , Humans , Mutagenesis, Site-Directed , T-Lymphocytes/immunology , T-Lymphocytes/pathology , T-Lymphocytes/virology , Virulence Factors/physiology , vpr Gene Products, Human Immunodeficiency Virus/physiology
11.
Biochimie ; 171-172: 110-123, 2020.
Article in English | MEDLINE | ID: mdl-32105815

ABSTRACT

Human Ku heterodimeric protein composed of Ku70 and Ku80 subunits plays an important role in the non-homologous end-joining DNA repair pathway as a sensor of double strand DNA breaks. Ku is also involved in numerous cellular processes, and in some of them it acts in an RNA-dependent manner. However, RNA binding properties of the human Ku have not been well studied. Here we have analyzed interactions of a recombinant Ku heterodimer with a set of RNAs of various structure as well as eCLIP (enhanced crosslinking and immunoprecipitation) data for human Ku70. As a result, we have proposed a consensus RNA structure preferable for the Ku binding that is a hairpin possessing a bulge just near GpG sequence-containing terminal loop. 7SK snRNA is a scaffold for a ribonucleoprotein complex (7SK snRNP), which is known to participate in transcription regulation. We have shown that the recombinant Ku specifically binds a G-rich loop of hairpin 1 within 7SK snRNA. Moreover, Ku protein has been co-precipitated from HEK 293T cells with endogenous 7SK snRNA and such proteins included in 7SK snRNP as HEXIM1, Cdk9 and CTIP2. Ku and Cdk9 binding is found to be RNA-independent, meanwhile HEXIM1 and Ku co-precipitation depended on the presence of intact 7SK snRNA. The latter result has been confirmed using recombinant HEXIM1 and Ku proteins. Colocalization of Ku and CTIP2 was additionally confirmed by confocal microscopy. These results allow us to propose human Ku as a new component of the 7SK snRNP complex.


Subject(s)
Ku Autoantigen/metabolism , RNA, Long Noncoding/metabolism , Binding Sites , Cyclin-Dependent Kinase 9/metabolism , HEK293 Cells , Humans , Protein Binding , RNA-Binding Proteins/metabolism , Recombinant Proteins/metabolism , Repressor Proteins/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
12.
Article in English | MEDLINE | ID: mdl-31709195

ABSTRACT

Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.


Subject(s)
Disease Reservoirs , HIV Infections/virology , HIV-1/physiology , Microglia/virology , Brain/virology , HIV Infections/drug therapy , HIV-1/drug effects , Host-Pathogen Interactions , Humans , Microglia/drug effects , Virus Activation , Virus Latency
13.
Plant Physiol ; 178(4): 1643-1656, 2018 12.
Article in English | MEDLINE | ID: mdl-30305373

ABSTRACT

Thymidine kinase (TK) is a key enzyme of the salvage pathway that recycles thymidine nucleosides to produce deoxythymidine triphosphate. Here, we identified the single TK of maize (Zea mays), denoted CPTK1, as necessary in the replication of the plastidial genome (cpDNA), demonstrating the essential function of the salvage pathway during chloroplast biogenesis. CPTK1 localized to both plastids and mitochondria, and its absence resulted in an albino phenotype, reduced cpDNA copy number and a severe deficiency in plastidial ribosomes. Mitochondria were not affected, indicating they are less reliant on the salvage pathway. Arabidopsis (Arabidopsis thaliana) TKs, TK1A and TK1B, apparently resulted from a gene duplication after the divergence of monocots and dicots. Similar but less-severe effects were observed for Arabidopsis tk1a tk1b double mutants in comparison to those in maize cptk1 TK1B was important for cpDNA replication and repair in conditions of replicative stress but had little impact on the mitochondrial phenotype. In the maize cptk1 mutant, the DNA from the small single-copy region of the plastidial genome was reduced to a greater extent than other regions, suggesting preferential abortion of replication in this region. This was accompanied by the accumulation of truncated genomes that resulted, at least in part, from unfaithful microhomology-mediated repair. These and other results suggest that the loss of normal cpDNA replication elicits the mobilization of new replication origins around the rpoB (beta subunit of plastid-encoded RNA polymerase) transcription unit and imply that increased transcription at rpoB is associated with the initiation of cpDNA replication.


Subject(s)
DNA Replication/genetics , Genome, Plastid/genetics , Plant Proteins/metabolism , Thymidine Kinase/metabolism , Zea mays/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplasts/genetics , DNA, Chloroplast/genetics , DNA, Chloroplast/metabolism , Gene Duplication , Gene Expression Regulation, Plant , Mitochondrial Ribosomes/metabolism , Mutation , Plant Proteins/genetics , Protein Biosynthesis , Thymidine Kinase/genetics
14.
Plant Cell ; 27(10): 2907-25, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26462909

ABSTRACT

The mitochondria of flowering plants have considerably larger and more complex genomes than the mitochondria of animals or fungi, mostly due to recombination activities that modulate their genomic structures. These activities most probably participate in the repair of mitochondrial DNA (mtDNA) lesions by recombination-dependent processes. Rare ectopic recombination across short repeats generates new genomic configurations that contribute to mtDNA heteroplasmy, which drives rapid evolution of the sequence organization of plant mtDNAs. We found that Arabidopsis thaliana RECG1, an ortholog of the bacterial RecG translocase, is an organellar protein with multiple roles in mtDNA maintenance. RECG1 targets to mitochondria and plastids and can complement a bacterial recG mutant that shows defects in repair and replication control. Characterization of Arabidopsis recG1 mutants showed that RECG1 is required for recombination-dependent repair and for suppression of ectopic recombination in mitochondria, most likely because of its role in recovery of stalled replication forks. The analysis of alternative mitotypes present in a recG1 line and of their segregation following backcross allowed us to build a model to explain how a new stable mtDNA configuration, compatible with normal plant development, can be generated by stoichiometric shift.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , DNA Repair , DNA Replication , DNA, Mitochondrial/genetics , Membrane Transport Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA, Plant/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Knockout Techniques , Membrane Transport Proteins/genetics , Mitochondria/metabolism , Models, Molecular , Mutation , Phenotype , Phylogeny , Plastids/metabolism , Recombination, Genetic
15.
Biochimie ; 117: 48-62, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26143009

ABSTRACT

Originally focused on the nuclear and cytosolic compartments, the concept of regulation driven by non-coding RNAs (ncRNAs) is extending to mitochondria and chloroplasts. These organelles have distinct genetic systems that need coordination with cellular demands. In mammals, nuclear-encoded microRNAs were found associated with the mitochondria. Some of these contribute to the regulation of mitochondrial transcription and translation. Others were proposed to be stored in the organelles and to be released for regulation of nuclear transcripts. Further ncRNAs of various sizes derive from the mitochondrial genome and it was speculated that organelles host antisense or RNA interference pathways. Long ncRNAs mapping to the mitochondrial DNA seem to operate in the nucleus. Altogether, the origin and trafficking of ncRNAs categorized as mitochondrial in mammals raise questions far beyond the current knowledge. In protozoa, hundreds of guide RNAs specify editing events needed to generate functional messenger RNAs. Only few ncRNAs have been reported in plant mitochondria, but editing sites were revealed in non-coding regions of the organellar genome, suggesting that the corresponding transcripts have a function. Conversely, numerous ncRNA candidates were identified in chloroplasts, essentially mapping to the plastid genome. A synthetic view of the data with their functional implications is given here.


Subject(s)
Chloroplasts/genetics , Gene Expression Regulation , Mitochondria/genetics , Plants/genetics , RNA, Untranslated/genetics , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Humans , Models, Genetic , RNA, Untranslated/metabolism
16.
Biochimie ; 100: 107-20, 2014 May.
Article in English | MEDLINE | ID: mdl-24075874

ABSTRACT

Plant mitochondria have a complex and peculiar genetic system. They have the largest genomes, as compared to organelles from other eukaryotic organisms. These can expand tremendously in some species, reaching the megabase range. Nevertheless, whichever the size, the gene content remains modest and restricted to a few polypeptides required for the biogenesis of the oxidative phosphorylation chain complexes, ribosomal proteins, transfer RNAs and ribosomal RNAs. The presence of autonomous plasmids of essentially unknown function further enhances the level of complexity. The physical organization of the plant mitochondrial DNA includes a set of sub-genomic forms resulting from homologous recombination between repeats, with a mixture of linear, circular and branched structures. This material is compacted into membrane-bound nucleoids, which are the inheritance units but also the centers of genome maintenance and expression. Recombination appears to be an essential characteristic of plant mitochondrial genetic processes, both in shaping and maintaining the genome. Under nuclear surveillance, recombination is also the basis for the generation of new mitotypes and is involved in the evolution of the mitochondrial DNA. In line with, or as a consequence of its complex physical organization, replication of the plant mitochondrial DNA is likely to occur through multiple mechanisms, potentially involving recombination processes. We give here a synthetic view of these aspects.


Subject(s)
DNA, Mitochondrial/genetics , Genome, Mitochondrial , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Plant Proteins/genetics , Plants/genetics , DNA Repair , DNA Replication , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/metabolism , Gene Expression Regulation , Genome Size , Mitochondria/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants/metabolism , Plasmids/chemistry , Plasmids/metabolism , Protein Biosynthesis , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...