Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Energy Mater ; 5(1): 461-468, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35098042

ABSTRACT

Ag alloying and the introduction of alkali elements through a postdeposition treatment are two approaches to improve the performance of Cu(In,Ga)Se2 (CIGS) thin film solar cells. In particular, a postdeposition treatment of an alkali metal fluoride of the absorber has shown a beneficial effect on the solar cells performance due to an increase in the open circuit voltage (V OC) for both (Ag,Cu)(In,Ga)Se2 (ACIGS) and CIGS based solar cells. Several reasons have been suggested for the improved V OC in CIGS solar cells including absorber surface and interface effects. Less works investigated how the applied postdeposition treatment influences the ACIGS absorber surface and interface properties and the subsequent buffer layer growth. In this work we employed hard X-ray photoelectron spectroscopy to study the chemical and electronic properties at the real functional interface between a CdS buffer and ACIGS absorbers that have been exposed to different alkali metal fluoride treatments during preparation. All samples show an enhanced Ag content at the CdS/ACIGS interface as compared to ACIGS bulk-like composition, and it is also shown that this enhanced Ag content anticorrelates with Ga content. The results indicate that the absorber composition at the near-surface region changes depending on the applied alkali postdeposition treatment. The Cu and Ga decrease and the Ag increase are stronger for the RbF treatment as compared to the CsF treatment, which correlates with the observed device characteristics. This suggests that a selective alkali postdeposition treatment could change the ACIGS absorber surface composition, which can influence the solar cell behavior.

2.
J Bacteriol ; 191(14): 4534-45, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19429624

ABSTRACT

Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins.


Subject(s)
Azotobacter vinelandii/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Bacterial Proteins/genetics , Base Sequence , Metabolism/genetics , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...