Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Int ; 146: 105041, 2021 06.
Article in English | MEDLINE | ID: mdl-33836218

ABSTRACT

Fluoxetine (FLX), a commonly used selective serotonin reuptake inhibitor, is often used to treat depression during pregnancy. However, prenatal exposure to FLX has been associated with a series of neuropsychiatric illnesses. The use of a rodent model can provide a clear indication as to whether prenatal exposure to SSRIs, independent of maternal psychiatric disorders or genetic syndromes, can cause long-term behavioral abnormalities in offspring. Thus, the present study aimed to explore whether prenatal FLX exposure causes long-term neurobehavioral effects, and identify the underlying mechanism between FLX and abnormal behaviors. In our study, 12/mg/kg/day of FLX or equal normal saline (NS) was administered to pregnant Sprague-Dawley (SD) rats (FLX = 30, NS = 27) on gestation day 11 till birth. We assessed the physical development and behavior of offspring, and in vivo magnetic resonance spectroscopy (MRS) was conducted to quantify biochemical alterations in the prefrontal cortex (PFC). Ex vivo measurements of brain serotonin level and a proteomic analysis were also undertaken. Our results showed that the offspring (male offspring in particular) of fluoxetine exposed mothers showed delayed physical development, increased anxiety-like behavior, and impaired social interaction. Moreover, down-regulation of 5-HT and SERT expression were identified in the PFC. We also found that prenatal FLX exposure significantly decreased NAA/tCr with 1H-MRS in the PFC of offspring. Finally, a proteomic study revealed sex-dependent differential protein expression. These findings may have translational importance suggesting that using SSRI medication alone in pregnant mothers may result in developmental delay in their offspring. Our results also help guide the choice of outcome measures in identifying of molecular and developmental mechanisms.


Subject(s)
Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prenatal Exposure Delayed Effects/metabolism , Selective Serotonin Reuptake Inhibitors/toxicity , Serotonin/metabolism , Social Interaction/drug effects , Animals , Female , Gene Expression , Male , Maternal Exposure/adverse effects , Prefrontal Cortex/growth & development , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/psychology , Rats , Rats, Sprague-Dawley
2.
World J Stem Cells ; 11(2): 55-72, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30842805

ABSTRACT

Autism and autism spectrum disorders (ASD) refer to a range of conditions characterized by impaired social and communication skills and repetitive behaviors caused by different combinations of genetic and environmental influences. Although the pathophysiology underlying ASD is still unclear, recent evidence suggests that immune dysregulation and neuroinflammation play a role in the etiology of ASD. In particular, there is direct evidence supporting a role for maternal immune activation during prenatal life in neurodevelopmental conditions. Currently, the available options of behavioral therapies and pharmacological and supportive nutritional treatments in ASD are only symptomatic. Given the disturbing rise in the incidence of ASD, and the fact that there is no effective pharmacological therapy for ASD, there is an urgent need for new therapeutic options. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that make them relevant to several diseases associated with inflammation and tissue damage. The paracrine regenerative mechanisms of MSCs are also suggested to be therapeutically beneficial for ASD. Thus the underlying pathology in ASD, including immune system dysregulation and inflammation, represent potential targets for MSC therapy. This review will focus on immune dysfunction in the pathogenesis of ASD and will further discuss the therapeutic potential for MSCs in mediating ASD-related immunological disorders.

3.
Cereb Cortex ; 29(11): 4818-4830, 2019 12 17.
Article in English | MEDLINE | ID: mdl-30796800

ABSTRACT

Affective disorders are associated with increased sensitivity to negative feedback that influences approach-avoidance decision making. Although neuroimaging studies of these disorders reveal dysregulation in primate cingulate areas 25 and 32 and the anterior hippocampus (aHipp), the causal involvement of these structures and their interaction in the primate brain is unknown. We therefore investigated the effects of localized pharmacological manipulations of areas 25 and 32 and/or the aHipp of the marmoset monkey on performance of an anxiolytic-sensitive instrumental decision-making task in which an approach-avoidance conflict is created by pairing a response with reward and punishment. During control infusions animals avoided punishment, but this bias was reduced by increasing glutamate release within the aHipp or area 32, and inactivation or 5-HT1a antagonism within area 25. Conversely, increasing glutamate release in area 25 enhanced punishment avoidance but, in contrast to previous reports, area 32 and aHipp inactivations had no effect. Simultaneous inactivation or 5-HT1a antagonism within area 25, but not area 32, abolished the reduced punishment avoidance seen after increasing aHipp glutamate. Besides providing causal evidence that these primate areas differentially regulate negative feedback sensitivity, this study links the decision-making deficits in affective disorders to aberrant aHipp-area 25 circuit activity.


Subject(s)
Avoidance Learning/physiology , Choice Behavior/physiology , Decision Making/physiology , Hippocampus/physiology , Prefrontal Cortex/physiology , Punishment , Reward , Animals , Callithrix , Conflict, Psychological , Female , Glutamic Acid/physiology , Male
4.
J Neurosci ; 39(16): 3094-3107, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30718320

ABSTRACT

High-trait anxiety is a risk factor for the development of affective disorders and has been associated with decreased cardiovascular and behavioral responsivity to acute stressors in humans that may increase the risk of developing cardiovascular disease. Although human neuroimaging studies of high-trait anxiety reveals dysregulation in primate cingulate areas 25 and 32 and the anterior hippocampus (aHipp) and rodent studies reveal the importance of aHipp glutamatergic hypofunction, the causal involvement of aHipp glutamate and its interaction with these areas in the primate brain is unknown. Accordingly, we correlated marmoset trait anxiety scores to their postmortem aHipp glutamate levels and showed that low glutamate in the right aHipp is associated with high-trait anxiety in marmosets. Moreover, pharmacologically increasing aHipp glutamate reduced anxiety levels in highly anxious marmosets in two uncertainty-based tests of anxiety: exposure to a human intruder with uncertain intent and unpredictable loud noise. In the human intruder test, increasing aHipp glutamate decreased anxiety by increasing approach to the intruder. In the unpredictable threat test, animals showed blunted behavioral and cardiovascular responsivity after control infusions, which was normalized by increasing aHipp glutamate. However, this aHipp-mediated anxiolytic effect was blocked by simultaneous pharmacological inactivation of area 25, but not area 32, areas which when inactivated independently reduced and had no effect on anxiety, respectively. These findings provide causal evidence in male and female primates that aHipp glutamatergic hypofunction and its regulation by area 25 contribute to the behavioral and cardiovascular symptoms of endogenous high-trait anxiety.SIGNIFICANCE STATEMENT High-trait anxiety predisposes sufferers to the development of anxiety and depression. Although neuroimaging of these disorders and rodent modeling implicate dysregulation in hippocampal glutamate and the subgenual/perigenual cingulate cortices (areas 25/32), the causal involvement of these structures in endogenous high-trait anxiety and their interaction are unknown. Here, we demonstrate that increased trait anxiety in marmoset monkeys correlates with reduced hippocampal glutamate and that increasing hippocampal glutamate release in high-trait-anxious monkeys normalizes the aberrant behavioral and cardiovascular responsivity to potential threats. This normalization was blocked by simultaneous inactivation of area 25, but not area 32. These findings provide casual evidence in primates that hippocampal glutamatergic hypofunction regulates endogenous high-trait anxiety and the hippocampal-area 25 circuit is a potential therapeutic target.


Subject(s)
Anxiety/metabolism , Behavior, Animal/physiology , Glutamic Acid/metabolism , Heart Rate/physiology , Hippocampus/metabolism , Amino Acids/pharmacology , Animals , Behavior, Animal/drug effects , Benzylamines/pharmacology , Callithrix , Excitatory Amino Acid Antagonists/pharmacology , Female , GABA-A Receptor Antagonists/pharmacology , Heart Rate/drug effects , Hippocampus/drug effects , Male , Phosphinic Acids/pharmacology , Xanthenes/pharmacology
5.
Proc Natl Acad Sci U S A ; 114(20): E4075-E4084, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28461477

ABSTRACT

Disorders of dysregulated negative emotion such as depression and anxiety also feature increased cardiovascular mortality and decreased heart-rate variability (HRV). These disorders are correlated with dysfunction within areas 25 and 32 of the ventromedial prefrontal cortex (vmPFC), but a causal relationship between dysregulation of these areas and such symptoms has not been demonstrated. Furthermore, cross-species translation is limited by inconsistent findings between rodent fear extinction and human neuroimaging studies of negative emotion. To reconcile these literatures, we applied an investigative approach to the brain-body interactions at the core of negative emotional dysregulation. We show that, in marmoset monkeys (a nonhuman primate that has far greater vmPFC homology to humans than rodents), areas 25 and 32 have causal yet opposing roles in regulating the cardiovascular and behavioral correlates of negative emotion. In novel Pavlovian fear conditioning and extinction paradigms, pharmacological inactivation of area 25 decreased the autonomic and behavioral correlates of negative emotion expectation, whereas inactivation of area 32 increased them via generalization. Area 25 inactivation also increased resting HRV. These findings are inconsistent with current theories of rodent/primate prefrontal functional similarity, and provide insight into the role of these brain regions in affective disorders. They demonstrate that area 32 hypoactivity causes behavioral generalization relevant to anxiety, and that area 25 is a causal node governing the emotional and cardiovascular symptomatology relevant to anxiety and depression.


Subject(s)
Callithrix/physiology , Fear/physiology , Prefrontal Cortex/physiology , Animals , Conditioning, Psychological , Female , Heart Rate , Male , Parasympathetic Nervous System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...