Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361981

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) has been shown to counteract seizures when overexpressed or delivered into the brain in various animal models of epileptogenesis or chronic epilepsy. The mechanisms underlying this effect have not been investigated. We here demonstrate for the first time that GDNF enhances GABAergic inhibitory drive onto mouse pyramidal neurons by modulating postsynaptic GABAA receptors, particularly in perisomatic inhibitory synapses, by GFRα1 mediated activation of the Ret receptor pathway. Other GDNF receptors, such as NCAM or Syndecan3, are not contributing to this effect. We observed similar alterations by GDNF in human hippocampal slices resected from epilepsy patients. These data indicate that GDNF may exert its seizure-suppressant action by enhancing GABAergic inhibitory transmission in the hippocampal network, thus counteracting the increased excitability of the epileptic brain. This new knowledge can contribute to the development of novel, more precise treatment strategies based on a GDNF gene therapy approach.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Hippocampus , Proto-Oncogene Proteins c-ret , Pyramidal Cells , Animals , Humans , Mice , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Hippocampus/metabolism , Neurons/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Synapses/metabolism , Pyramidal Cells/metabolism
2.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948040

ABSTRACT

Epilepsy is a complex disorder affecting the central nervous system and is characterised by spontaneously recurring seizures (SRSs). Epileptic patients undergo symptomatic pharmacological treatments, however, in 30% of cases, they are ineffective, mostly in patients with temporal lobe epilepsy. Therefore, there is a need for developing novel treatment strategies. Transplantation of cells releasing γ-aminobutyric acid (GABA) could be used to counteract the imbalance between excitation and inhibition within epileptic neuronal networks. We generated GABAergic interneuron precursors from human embryonic stem cells (hESCs) and grafted them in the hippocampi of rats developing chronic SRSs after kainic acid-induced status epilepticus. Using whole-cell patch-clamp recordings, we characterised the maturation of the grafted cells into functional GABAergic interneurons in the host brain, and we confirmed the presence of functional inhibitory synaptic connections from grafted cells onto the host neurons. Moreover, optogenetic stimulation of grafted hESC-derived interneurons reduced the rate of epileptiform discharges in vitro. We also observed decreased SRS frequency and total time spent in SRSs in these animals in vivo as compared to non-grafted controls. These data represent a proof-of-concept that hESC-derived GABAergic neurons can exert a therapeutic effect on epileptic animals presumably through establishing inhibitory synapses with host neurons.


Subject(s)
Interneurons/cytology , Kainic Acid/adverse effects , Seizures/therapy , Status Epilepticus/therapy , Stem Cell Transplantation/methods , gamma-Aminobutyric Acid/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Humans , Interneurons/metabolism , Male , Rats , Recurrence , Seizures/chemically induced , Seizures/metabolism , Seizures/pathology , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Status Epilepticus/pathology , Stem Cells/cytology , Stem Cells/metabolism
3.
Sci Rep ; 11(1): 22050, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764308

ABSTRACT

Gamma-aminobutyric acid (GABA)-releasing interneurons modulate neuronal network activity in the brain by inhibiting other neurons. The alteration or absence of these cells disrupts the balance between excitatory and inhibitory processes, leading to neurological disorders such as epilepsy. In this regard, cell-based therapy may be an alternative therapeutic approach. We generated light-sensitive human embryonic stem cell (hESC)-derived GABAergic interneurons (hdIN) and tested their functionality. After 35 days in vitro (DIV), hdINs showed electrophysiological properties and spontaneous synaptic currents comparable to mature neurons. In co-culture with human cortical neurons and after transplantation (AT) into human brain tissue resected from patients with drug-resistant epilepsy, light-activated channelrhodopsin-2 (ChR2) expressing hdINs induced postsynaptic currents in human neurons, strongly suggesting functional efferent synapse formation. These results provide a proof-of-concept that hESC-derived neurons can integrate and modulate the activity of a human host neuronal network. Therefore, this study supports the possibility of precise temporal control of network excitability by transplantation of light-sensitive interneurons.


Subject(s)
GABAergic Neurons/cytology , Human Embryonic Stem Cells/cytology , Nerve Net/cytology , Animals , Cell Line , Cells, Cultured , Coculture Techniques , GABAergic Neurons/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Mice , Nerve Net/physiology , Neurogenesis , Synaptic Potentials
4.
Glia ; 66(5): 1068-1081, 2018 05.
Article in English | MEDLINE | ID: mdl-29393544

ABSTRACT

NG2 cells represent precursors of oligodendrocytes under physiological conditions; however, following cerebral ischemia they play an important role in glial scar formation. Here, we compared the expression profiles of oligodendroglial lineage cells, after focal cerebral ischemia (FCI) and in Alzheimer's-like pathology using transgenic mice, which enables genetic fate-mapping of Cspg4-positive NG2 cells and their progeny, based on the expression of red fluorescent protein tdTomato. tdTomato-positive cells possessed the expression profile of NG2 cells and oligodendrocytes; however, based on the expression of cell type-specific genes, we were able to distinguish between them. To shed light on the changes in the expression patterns caused by FCI, we employed self-organizing Kohonen maps, enabling the division of NG2 cells and oligodendrocytes into subpopulations based on similarities in the expression profiles of individual cells. We identified three subpopulations of NG2 cells emerging after FCI: proliferative; astrocyte-like and oligodendrocyte-like NG2 cells; such phenotypes were further confirmed by immunohistochemistry. Oligodendrocytes themselves formed four subpopulations, which reflected the process of oligodendrocytes maturation. Finally, we used 5-ethynyl-2' deoxyuridine (EdU) labeling to reveal that NG2 cells can differentiate directly into reactive astrocytes without preceding proliferation. In contrast, in Alzheimer's-like pathology we failed to identify these subpopulations. Collectively, here we identified several yet unknown differences between the expression profiles of NG2 cells and oligodendrocytes, and characterized specific genes contributing to oligodendrocyte maturation and phenotypical changes of NG2 cells after FCI. Moreover, our results suggest that, unlike in Alzheimer's-like pathology, NG2 cells acquire a multipotent phenotype following FCI.


Subject(s)
Brain Ischemia/physiopathology , Nerve Regeneration/physiology , Oligodendrocyte Precursor Cells/physiology , Animals , Astrocytes/pathology , Astrocytes/physiology , Brain/pathology , Brain/physiopathology , Brain Ischemia/pathology , Cell Proliferation/physiology , Disease Models, Animal , Female , Mice, Transgenic , Oligodendrocyte Precursor Cells/pathology , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL