Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38688283

ABSTRACT

How evolutionary changes in genes and neurons encode species variation in complex motor behaviors is largely unknown. Here, we develop genetic tools that permit a neural circuit comparison between the model species Drosophila melanogaster and the closely related species D. yakuba, which has undergone a lineage-specific loss of sine song, one of the two major types of male courtship song in Drosophila. Neuroanatomical comparison of song-patterning neurons called TN1 across the phylogeny demonstrates a link between the loss of sine song and a reduction both in the number of TN1 neurons and the neurites supporting the sine circuit connectivity. Optogenetic activation confirms that TN1 neurons in D. yakuba have lost the ability to drive sine song, although they have maintained the ability to drive the singing wing posture. Single-cell transcriptomic comparison shows that D. yakuba specifically lacks a cell type corresponding to TN1A neurons, the TN1 subtype that is essential for sine song. Genetic and developmental manipulation reveals a functional divergence of the sex determination gene doublesex in D. yakuba to reduce TN1 number by promoting apoptosis. Our work illustrates the contribution of motor patterning circuits and cell type changes in behavioral evolution and uncovers the evolutionary lability of sex determination genes to reconfigure the cellular makeup of neural circuits.

2.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328135

ABSTRACT

How evolutionary changes in genes and neurons encode species variation in complex motor behaviors are largely unknown. Here, we develop genetic tools that permit a neural circuit comparison between the model species Drosophila melanogaster and the closely-related species D. yakuba, who has undergone a lineage-specific loss of sine song, one of the two major types of male courtship song in Drosophila. Neuroanatomical comparison of song patterning neurons called TN1 across the phylogeny demonstrates a link between the loss of sine song and a reduction both in the number of TN1 neurons and the neurites serving the sine circuit connectivity. Optogenetic activation confirms that TN1 neurons in D. yakuba have lost the ability to drive sine song, while maintaining the ability to drive the singing wing posture. Single-cell transcriptomic comparison shows that D. yakuba specifically lacks a cell type corresponding to TN1A neurons, the TN1 subtype that is essential for sine song. Genetic and developmental manipulation reveals a functional divergence of the sex determination gene doublesex in D. yakuba to reduce TN1 number by promoting apoptosis. Our work illustrates the contribution of motor patterning circuits and cell type changes in behavioral evolution, and uncovers the evolutionary lability of sex determination genes to reconfigure the cellular makeup of neural circuits.

3.
J Hered ; 113(1): 102-108, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34634803

ABSTRACT

Recently, researchers have documented variation between groups in collective behavior. However, how genetic variation within and between groups contributes to population-level variation for collective behavior remains unclear. Understanding how genetic variation of group members relates to group-level phenotypes is evolutionarily important because there is increasing evidence that group-level behavioral variation influences fitness and that the genetic architecture of group-level traits can affect the evolutionary dynamics of traits. Social insects are ideal for studying the complex relationship between individual and group-level variation because they exhibit behavioral variation at multiple scales of organization. To explore how the genetic composition of groups affects collective behavior, we constructed groups of pharaoh ants (Monomorium pharaonis) from 33 genetically distinct colonies of known pedigree. The groups consisted of either all workers from the same single colony or workers from two genetically different colonies, and we assayed the exploration and aggression of the groups. We found that collective exploration, but not aggression, depended on the specific genotypic combination of group members, i.e., we found evidence for genotype-by-genotype epistasis for exploration. Group collective behavior did not depend on the pedigree relatedness between genotypes within groups. Overall, this study highlights that specific combinations of genotypes influence group-level phenotypes, emphasizing the importance of considering nonadditive effects of genotypic interactions between group members.


Subject(s)
Ants , Aggression , Animals , Ants/genetics , Behavior, Animal , Genotype , Mass Gatherings , Phenotype
4.
Am Nat ; 196(5): 541-554, 2020 11.
Article in English | MEDLINE | ID: mdl-33064586

ABSTRACT

AbstractCollective behaviors are widespread in nature and usually assumed to be strongly shaped by natural selection. However, the degree to which variation in collective behavior is heritable and has fitness consequences-the two prerequisites for evolution by natural selection-is largely unknown. We used a new pharaoh ant (Monomorium pharaonis) mapping population to estimate the heritability, genetic correlations, and fitness consequences of three collective behaviors (foraging, aggression, and exploration), as well as of body size, sex ratio, and caste ratio. Heritability estimates for the collective behaviors were moderate, ranging from 0.17 to 0.32, but lower than our estimates for the heritability of caste ratio, sex ratio, and body size of new workers, queens, and males. Moreover, variation in collective behaviors among colonies was phenotypically correlated, suggesting that selection may shape multiple colony collective behaviors simultaneously. Finally, we found evidence for directional selection that was similar in strength to estimates of selection in natural populations. Altogether, our study begins to elucidate the genetic architecture of collective behavior and is one of the first studies to demonstrate that it is shaped by selection.


Subject(s)
Ants/genetics , Genetic Fitness , Social Behavior , Aggression , Animals , Ants/physiology , Appetitive Behavior , Body Size , Female , Male , Phenotype , Selection, Genetic , Sex Ratio
5.
Ecol Evol ; 8(21): 10409-10415, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30464814

ABSTRACT

Cooperative brood care by siblings, a defining feature of eusociality, is hypothesized to be evolutionarily derived from maternal care via shifts in the timing of the expression of genes underlying maternal care. If sibling and maternal care share a genetic basis, the two behaviors are expected to be genetically and phenotypically correlated. We tested this prediction in the black garden ant Lasius niger by quantifying the brood retrieval rate of queens and their first and later generation worker offspring. Brood retrieval rate of queens was positively phenotypically correlated with the brood retrieval rate of first generation but not with later generation workers. The difference between first and later generation workers could be due to the stronger similarity in care behavior provided by queens and first generation workers compared to later generations. Furthermore, we found that queen retrieval rate was positively correlated with colony productivity, suggesting that natural selection is acting on maternal care. Overall, our results support the idea of a shared genetic basis between maternal and sibling care as well as queen and worker traits more generally, which has implications for the role of intercaste correlations in the evolution of queen and worker traits and eusociality.

SELECTION OF CITATIONS
SEARCH DETAIL
...