Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Bone ; 186: 117145, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38838798

ABSTRACT

The influence of iron on collagen synthesis and vitamin D metabolism has implications for bone health. This cross-sectional observational study investigated associations between markers of iron status and tibial structure, vitamin D metabolites, and circulating biochemical markers of bone metabolism in young healthy men. A total of 343 male British Army recruits participated (age 22 ± 3 y, height 1.77 ± 0.06 m, body mass 75.5 ± 10.1 kg). Circulating biochemical markers of iron status, vitamin D metabolites, and bone metabolism, and tibial structure and density by high-resolution peripheral quantitative computed tomography scans (HRpQCT) were measured in participants during week 1 of basic military training. Associations between markers of iron status and HRpQCT outcomes, bone metabolism, and vitamin D metabolites were tested, controlling for age, height, lean body mass, and childhood exercise volume. Higher ferritin was associated with higher total, trabecular, and cortical volumetric bone mineral density, trabecular volume, cortical area and thickness, stiffness, and failure load (all p ≤ 0.037). Higher soluble transferrin receptor (sTfR) was associated with lower trabecular number, and higher trabecular thickness and separation, cortical thickness, and cortical pore diameter (all p ≤ 0.033). Higher haemoglobin was associated with higher cortical thickness (p = 0.043). Higher ferritin was associated with lower ßCTX, PINP, total 25(OH)D, and total 24,25(OH)2D, and higher 1,25(OH)2D:24,25(OH)2D ratio (all p ≤ 0.029). Higher sTfR was associated with higher PINP, total 25(OH)D, and total 24,25(OH)2D (all p ≤ 0.025). The greater density, size, and strength of the tibia, and lower circulating concentrations of markers of bone resorption and formation with better iron stores (higher ferritin) are likely as a result of the direct role of iron in collagen synthesis.


Subject(s)
Bone Density , Iron , Tibia , Vitamin D , Humans , Male , Vitamin D/blood , Young Adult , Iron/metabolism , Iron/blood , Tibia/diagnostic imaging , Tibia/metabolism , Bone Density/physiology , Adult , Cross-Sectional Studies , Tomography, X-Ray Computed , Biomarkers/blood , Adolescent , Ferritins/blood
2.
Br J Nutr ; 131(4): 581-592, 2024 02 28.
Article in English | MEDLINE | ID: mdl-37732392

ABSTRACT

This study investigated sex differences in Fe status, and associations between Fe status and endurance and musculoskeletal outcomes, in military training. In total, 2277 British Army trainees (581 women) participated. Fe markers and endurance performance (2·4 km run) were measured at the start (week 1) and end (week 13) of training. Whole-body areal body mineral density (aBMD) and markers of bone metabolism were measured at week 1. Injuries during training were recorded. Training decreased Hb in men and women (mean change (-0·1 (95 % CI -0·2, -0·0) and -0·7 (95 % CI -0·9, -0·6) g/dl, both P < 0·001) but more so in women (P < 0·001). Ferritin decreased in men and women (-27 (95 % CI -28, -23) and -5 (95 % CI -8, -1) µg/l, both P ≤ 0·001) but more so in men (P < 0·001). Soluble transferrin receptor increased in men and women (2·9 (95 % CI 2·3, 3·6) and 3·8 (95 % CI 2·7, 4·9) nmol/l, both P < 0·001), with no difference between sexes (P = 0·872). Erythrocyte distribution width increased in men (0·3 (95 % CI 0·2, 0·4)%, P < 0·001) but not in women (0·1 (95 % CI -0·1, 0·2)%, P = 0·956). Mean corpuscular volume decreased in men (-1·5 (95 % CI -1·8, -1·1) fL, P < 0·001) but not in women (0·4 (95 % CI -0·4, 1·3) fL, P = 0·087). Lower ferritin was associated with slower 2·4 km run time (P = 0·018), sustaining a lower limb overuse injury (P = 0·048), lower aBMD (P = 0·021) and higher beta C-telopeptide cross-links of type 1 collagen and procollagen type 1 N-terminal propeptide (both P < 0·001) controlling for sex. Improving Fe stores before training may protect Hb in women and improve endurance and protect against injury.


Subject(s)
Iron , Military Personnel , Humans , Female , Male , Prospective Studies , Sex Characteristics , Ferritins
3.
J Bone Miner Res ; 38(10): 1453-1464, 2023 10.
Article in English | MEDLINE | ID: mdl-37526272

ABSTRACT

The relationship between vitamin D metabolites and lower body (pelvis and lower limb) overuse injury is unclear. In a prospective cohort study, we investigated the association between vitamin D metabolites and incidence of lower body overuse musculoskeletal and bone stress injury in young adults undergoing initial military training during all seasons. In 1637 men and 530 women (aged 22.6 ± 7.5 years; body mass index [BMI], 24.0 ± 2.6 kg/m- 2 ; 94.3% white ethnicity), we measured serum 25-hydroxyvitamin D (25(OH)D) and 24,25-dihydroxyvitamin D (24,25(OH)2 D) by high-performance liquid chromatography tandem mass spectrometry, and 1,25-dihydroxyvitamin D (1,25(OH)2 D) by immunoassay during week 1 of training. We examined whether the relationship between 25(OH)D and 1,25(OH)2 D:24,25(OH)2 D ratio was associated with overuse injury. During 12 weeks of training, 21.0% sustained ≥1 overuse musculoskeletal injury, and 5.6% sustained ≥1 bone stress injury. After controlling for sex, BMI, 2.4 km run time, smoking, bone injury history, and Army training course (Officer, standard, or Infantry), lower body overuse musculoskeletal injury incidence was higher for participants within the second lowest versus highest quartile of 24,25(OH)2 D (odds ratio [OR] = 1.62; 95% confidence interval [CI] 1.13-2.32; p = 0.009) and lowest versus highest cluster of 25(OH)D and 1,25(OH)2 D:24,25(OH)2 D (OR = 6.30; 95% CI 1.89-21.2; p = 0.003). Lower body bone stress injury incidence was higher for participants within the lowest versus highest quartile of 24,25(OH)2 D (OR = 4.02; 95% CI 1.82-8.87; p < 0.001) and lowest versus highest cluster of 25(OH)D and 1,25(OH)2 D:24,25(OH)2 D (OR = 22.08; 95% CI 3.26-149.4; p = 0.001), after controlling for the same covariates. Greater conversion of 25(OH)D to 24,25(OH)2 D, relative to 1,25(OH)2 D (ie, low 1,25(OH)2 D:24,25(OH)2 D), and higher serum 24,25(OH)2 D were associated with a lower incidence of lower body overuse musculoskeletal and bone stress injury. Serum 24,25(OH)2 D may have a role in preventing overuse injury in young adults undertaking arduous physical training. © 2023 Crown copyright and The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR). This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland.


Subject(s)
Cumulative Trauma Disorders , Vitamin D , Male , Humans , Female , Young Adult , Prospective Studies , Calcifediol , Minerals
4.
Sleep ; 46(1)2023 01 11.
Article in English | MEDLINE | ID: mdl-36112383

ABSTRACT

STUDY OBJECTIVES: Prospectively examine the association between sleep restriction, perceived sleep quality (PSQ) and upper respiratory tract infection (URTI). METHODS: In 1318 military recruits (68% males) self-reported sleep was assessed at the beginning and end of a 12-week training course. Sleep restriction was defined as an individualized reduction in sleep duration of ≥2 hours/night compared with civilian life. URTIs were retrieved from medical records. RESULTS: On commencing training, approximately half of recruits were sleep restricted (52%; 2.1 ± 1.6 h); despite the sleep debt, 58% of recruits with sleep restriction reported good PSQ. Regression adjusted for covariates showed that recruits commencing training with sleep restriction were more likely to suffer URTI during the course (OR = 2.93, 95% CI 1.29-6.69, p = .011). Moderation analysis showed this finding was driven by poor PSQ (B = -1.12, SE 0.50, p = .023), as no significant association between sleep restriction and URTI was observed in recruits reporting good PSQ, despite a similar magnitude of sleep restriction during training. Associations remained in the population completing training, accounting for loss to follow-up. Recruits reporting poor PSQ when healthy at the start and end of training were more susceptible to URTI (OR = 3.16, 95% CI 1.31-7.61, p = .010, vs good PSQ). CONCLUSION: Good perceived sleep quality was associated with protection against the raised risk of respiratory infection during sleep restriction. Studies should determine whether improvements in sleep quality arising from behavioral sleep interventions translate to reduced respiratory infection during sleep restriction.


Subject(s)
Respiratory Tract Infections , Sleep Quality , Male , Humans , Young Adult , Female , Sleep , Sleep Deprivation/complications , Self Report , Respiratory Tract Infections/complications , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control
5.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R601-R615, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36094449

ABSTRACT

This research compared thermal and perceptual adaptations, endurance capacity, and overreaching markers in men after 3, 6, and 12 days of post-exercise hot water immersion (HWI) or exercise heat acclimation (EHA) with a temperate exercise control (CON), and examined thyroid hormones as a mechanism for the reduction in resting and exercising core temperature (Tre) after HWI. HWI involved a treadmill run at 65% V̇o2peak at 19°C followed by a 40°C bath. EHA and CON involved a work-matched treadmill run at 65% V̇o2peak at 33°C or 19°C, respectively. Compared with CON, resting mean body temperature (Tb), resting and end-exercise Tre, Tre at sweating onset, thermal sensation, and perceived exertion were lower and whole-body sweat rate (WBSR) was higher after 12 days of HWI (all P ≤ 0.049, resting Tb: CON -0.11 ± 0.15°C, HWI -0.41 ± 0.15°C). Moreover, resting Tb and Tre at sweating onset were lower after HWI than EHA (P ≤ 0.015, resting Tb: EHA -0.14 ± 0.14°C). No differences were identified between EHA and CON (P ≥ 0.157) except WBSR that was greater after EHA (P = 0.013). No differences were observed between interventions for endurance capacity or overreaching markers (mood, sleep, Stroop, P ≥ 0.190). Thermal adaptations observed after HWI were not related to changes in thyroid hormone concentrations (P ≥ 0.086). In conclusion, 12 days of post-exercise hot water immersion conferred more complete heat acclimation than exercise heat acclimation without increasing overreaching risk, and changes in thyroid hormones are not related to thermal adaptations after post-exercise hot water immersion.


Subject(s)
Hot Temperature , Immersion , Male , Humans , Acclimatization/physiology , Sweating , Water , Thyroid Hormones
6.
Med Sci Sports Exerc ; 54(11): 1982-1989, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35766614

ABSTRACT

PURPOSE: This study aimed to determine vitamin D metabolites and vitamin D receptor (VDR) single-nucleotide polymorphism (SNP) relationships with physical performance. METHODS: In 1205 men and 322 women (94.8% White Caucasian, 22.0 ± 2.8 yr) commencing military training, we measured serum vitamin D metabolites (25-hydroxyvitamin D (25(OH)D) and 24,25-dihydroxyvitamin D (24,25(OH) 2 D) by high-performance liquid chromatography tandem mass spectrophotometry and 1,25-dihydroxyvitamin D (1,25(OH) 2 D) by immunoassay), VDR SNPs (rs2228570, rs4516035, and rs7139166 by polymerase chain reaction genotyping), and endurance performance by 2.4-km run, muscle strength by maximal dynamic lift, and muscle power by maximal vertical jump. RESULTS: Serum 25(OH)D was negatively associated with 2.4-km run time and positively associated with muscle power ( ß = -12.0 and 90.1), 1,25(OH) 2 D was positively associated with run time and negatively associated with strength and muscle power ( ß = 5.6, -1.06, and -38.4), and 24,25(OH) 2 D was negatively associated with run time ( ß = -8.9; P < 0.01), after controlling for age, sex, smoking, alcohol, physical activity, time outdoors, season, and body mass index. Vitamin D metabolites (25(OH)D, 1,25(OH) 2 D, and 24,25(OH) 2 D) together explained variances of 5.0% in run time, 0.7% in strength, and 0.9% in muscle power (Δ F P < 0.001). All performance measures were superior with low 1,25(OH) 2 D:24,25(OH) 2 D ratio ( P < 0.05). VDR SNPs were not associated with physical performance (Δ FP ≥ 0.306). CONCLUSIONS: Vitamin D metabolites accounted for a small portion of variance in physical performance. Associations between vitamin D metabolites and run time were the most consistent. VDR SNPs explained no variance in performance. Greater conversion of 25(OH)D to 24,25(OH) 2 D, relative to 1,25(OH) 2 D (i.e., low 1,25(OH) 2 D:24,25(OH) 2 D ratio), was favorable for performance, indicating 24,25(OH) 2 D may have a role in optimizing physical performance.


Subject(s)
Physical Functional Performance , Receptors, Calcitriol , Vitamin D , Adult , Female , Humans , Male , Calcifediol/blood , Receptors, Calcitriol/genetics , Vitamin D/blood , Polymorphism, Single Nucleotide , Military Personnel
7.
Int J Sport Nutr Exerc Metab ; 32(5): 371-386, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35279015

ABSTRACT

The term "food first" has been widely accepted as the preferred strategy within sport nutrition, although there is no agreed definition of this and often limited consideration of the implications. We propose that food first should mean "where practically possible, nutrient provision should come from whole foods and drinks rather than from isolated food components or dietary supplements." There are many reasons to commend a food first strategy, including the risk of supplement contamination resulting in anti-doping violations. However, a few supplements can enhance health and/or performance, and therefore a food only approach could be inappropriate. We propose six reasons why a food only approach may not always be optimal for athletes: (a) some nutrients are difficult to obtain in sufficient quantities in the diet, or may require excessive energy intake and/or consumption of other nutrients; (b) some nutrients are abundant only in foods athletes do not eat/like; (c) the nutrient content of some foods with established ergogenic benefits is highly variable; (d) concentrated doses of some nutrients are required to correct deficiencies and/or promote immune tolerance; (e) some foods may be difficult to consume immediately before, during or immediately after exercise; and (f) tested supplements could help where there are concerns about food hygiene or contamination. In these situations, it is acceptable for the athlete to consider sports supplements providing that a comprehensive risk minimization strategy is implemented. As a consequence, it is important to stress that the correct terminology should be "food first but not always food only."


Subject(s)
Performance-Enhancing Substances , Sports , Athletes , Diet , Dietary Supplements , Humans
8.
J Nutr ; 152(6): 1560-1573, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35285906

ABSTRACT

BACKGROUND: Physiologic and psychologic stress slow healing from experimental wounds by impairing immune function. OBJECTIVES: We aimed to determine whether supplemental protein and multinutrient supplementation improved wound healing markers after acute stress induced by acute sleep restriction. METHODS: In this single-blind, crossover study in generally healthy young adults (18 males/2 females; mean ± SD age: 19.7 ± 2.30 y), experimental wounds were created by removing the top layer of forearm blisters induced via suction after 48 h of 72-h sleep restriction (2-h nightly sleep), a protocol previously shown to delay wound healing. Skin barrier restoration (measured by transepidermal water loss) assessed wound healing ≤10 d postblistering, and local immune responses were evaluated by serial measurement of cytokine concentrations in fluid collected at wound sites for 48 h postblistering. Participants consumed controlled, isocaloric diets with either 0.900 g · kg-1 · d-1 protein plus placebo (PLA) or 1.50 g · kg-1 · d-1 protein plus multinutrient beverage [l-arginine: 20.0 g/d; l-glutamine: 30.0 g/d; omega-3 (n-3) fatty acids: 1.00 g/d; zinc sulfate: 24.0 mg/d; cholecalciferol: 800 IU/d; and vitamin C: 400 mg/d] (NUT) during sleep restriction and for 4 d afterwards. RESULTS: Skin barrier restoration (primary outcome) was shorter for NUT (median: 3.98 d; IQR: 1.17 d) than for PLA (median: 5.25 d; IQR: 1.05 d) (P = 0.001). Cytokines from wound fluid (secondary outcome) increased over time (main effect of time P ≤ 0.001), except IL-13 (P = 0.07); however, no effects of treatment were observed. CONCLUSIONS: Supplemental nutrition may promote wound healing after sleep restriction in healthy adults including military personnel, the latter of which also have a high incidence of wounds and infection.This trial was registered at clinicaltrials.gov as NCT03525184.


Subject(s)
Fatty Acids, Omega-3 , Wound Healing , Adolescent , Adult , Beverages , Cross-Over Studies , Cytokines , Female , Humans , Male , Polyesters/pharmacology , Single-Blind Method , Sleep , Young Adult
9.
Wilderness Environ Med ; 33(1): 92-96, 2022 03.
Article in English | MEDLINE | ID: mdl-35000867

ABSTRACT

INTRODUCTION: Every March, dogsled drivers (mushers) compete in a 1569-km race across Alaska, involving physical exertion, mental exertion, and sleep deprivation for up to 2 wk. These factors may increase mushers' vulnerability to illness, making them a relevant study population for acute infection risk factors. Specifically, the influence of psychological factors on illness risk during prolonged physical exertion has rarely been investigated. The aim of this study was to examine the relationship between psychological characteristics, sleep deprivation, and illness incidence in Iditarod mushers. METHODS: Fourteen mushers completed 4 psychological instruments to assess state and trait anxiety, resilience and perceived stress, and self-reported upper respiratory symptoms (URS) in the month before the race. Mushers self-reported sleep duration and URS during the race. RESULTS: State and trait anxiety, resilience, and perceived stress did not differ between mushers with and without pre- and in-race URS (P>0.05). However, all mushers who reported in-race URS had reported URS ≤9 d before the race, and the onset of symptoms during the race typically occurred shortly after a rest period. Sleep duration was higher in mushers who reported in-race URS, both before (4.9±0.3 h, P=0.016) and during illness (5.9±1.3 h, P=0.006), vs mushers without in-race URS (3.4±0.8 h). CONCLUSIONS: This study highlights recent illness, rest periods, and greater sleep requirements as potential risk factors for URS onset during a multiday endurance challenge, whereas psychological factors were not associated with URS.


Subject(s)
Sleep Deprivation , Sleep , Alaska/epidemiology , Animals , Dogs , Humans , Incidence , Physical Exertion , Sleep Deprivation/epidemiology
10.
J Sci Med Sport ; 24(8): 729-734, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34116919

ABSTRACT

OBJECTIVES: To compare heat acclimation adaptations after three and six days of either post-exercise hot water immersion (HWI) or exercise-heat-acclimation (EHA) in recreationally active individuals. DESIGN: Randomised, mixed model, repeated measures. METHODS: Post-exercise HWI involved a daily 40-min treadmill-run at 65% V̇O2peak in temperate conditions (19 °C, 45% RH) followed by HWI (≤40 min, 40 °C water; n = 9). Daily EHA involved a ≤60-min treadmill-run in the heat (65% V̇O2peak; 33 °C, 40% RH; n = 9), chosen to elicit a similar endogenous thermal stimulus to HWI. A thermoneutral exercise intervention (TNE, 19 °C, 45% RH; n = 9), work-matched to EHA, was also included to determine thermoregulatory adaptations to daily exercise in temperate conditions. An exercise-heat-stress-test was performed before and after three and six intervention days and involved a 40-min treadmill-run and time-to-exhaustion (TTE) at 65% V̇O2peak in the heat (33 °C, 40% RH). RESULTS: ANCOVA, using baseline values as the covariate, revealed no interaction effects but significant group effects demonstrated that compared to EHA, HWI elicited larger reductions in resting rectal temperature (Tre; p = 0.021), Tre at sweating onset (p = 0.011), and end-exercise Tre during exercise-heat-stress (-0.47 °C; p = 0.042). Despite a similar endogenous thermal stimulus to HWI, EHA elicited a modest reduction in end-exercise Tre (-0.26 °C), which was not different from TNE (-0.25 °C, p = 1.000). There were no main effects or interaction effects for end-exercise Tsk, heart rate, physiological strain index, RPE, thermal sensation, plasma volume, or TTE (all p ≥ 0.154). CONCLUSIONS: Compared with conventional short-term exercise heat acclimation, short-term post-exercise hot water immersion elicited larger thermal adaptations.


Subject(s)
Acclimatization , Body Temperature Regulation , Exercise/physiology , Hot Temperature , Immersion , Heat Stress Disorders/prevention & control , Humans , Male , Time Factors , Young Adult
11.
Med Sci Sports Exerc ; 53(7): 1505-1516, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33481482

ABSTRACT

PURPOSE: This study aimed to determine the relationship between vitamin D status and upper respiratory tract infection (URTI) of physically active men and women across seasons (study 1) and then to investigate the effects on URTI and mucosal immunity of achieving vitamin D sufficiency (25(OH)D ≥50 nmol·L-1) by a unique comparison of safe, simulated sunlight or oral D3 supplementation in winter (study 2). METHODS: In study 1, 1644 military recruits were observed across basic military training. In study 2, a randomized controlled trial, 250 men undertaking military training received placebo, simulated sunlight (1.3× standard erythemal dose, three times per week for 4 wk and then once per week for 8 wk), or oral vitamin D3 (1000 IU·d-1 for 4 wk and then 400 IU·d-1 for 8 wk). URTI was diagnosed by a physician (study 1) and by using the Jackson common cold questionnaire (study 2). Serum 25(OH)D, salivary secretory immunoglobulin A (SIgA), and cathelicidin were assessed by liquid chromatography-mass spectrometry LC-MS/MS and enzyme-linked immunosorbent assay. RESULTS: In study 1, only 21% of recruits were vitamin D sufficient during winter. Vitamin D-sufficient recruits were 40% less likely to suffer URTI than recruits with 25(OH)D <50 nmol·L-1 (OR = 0.6, 95% confidence interval = 0.4-0.9), an association that remained after accounting for sex and smoking. Each URTI caused, on average, three missed training days. In study 2, vitamin D supplementation strategies were similarly effective to achieve vitamin D sufficiency in almost all (≥95%). Compared with placebo, vitamin D supplementation reduced the severity of peak URTI symptoms by 15% and days with URTI by 36% (P < 0.05). These reductions were similar with both vitamin D strategies (P > 0.05). Supplementation did not affect salivary secretory immunoglobulin A or cathelicidin. CONCLUSION: Vitamin D sufficiency reduced the URTI burden during military training.


Subject(s)
Cholecalciferol/administration & dosage , Military Personnel , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/therapy , Sunlight , Administration, Oral , Adolescent , Adult , Double-Blind Method , Female , Humans , Immunity, Mucosal , Male , Surveys and Questionnaires , Young Adult
12.
Int J Sports Physiol Perform ; 16(2): 165-175, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33440333

ABSTRACT

PURPOSE: During heavily congested schedules, professional soccer players can experience exacerbated fatigue responses, which are thought to contribute to an increased risk of injury. Given that match-induced residual fatigue can last up to 72 hours, many coaches naturally prioritize recovery in the days immediately following match day. While it is intuitive for coaches and training staff to decrease the amount of auxiliary training practices to focus on recovery, prescribing upper-body resistance training on the day after match play has recently emerged as a specific training modality in this context. While these sessions may be implemented to increase training stimulus, there are limited data available regarding the efficacy of such a practice to improve recovery kinetics. METHODS: In this narrative review, the authors look at the theoretical implications of performing upper-body resistance training on the day after match play on the status of various physiological and psychological systems, including neuromuscular, metabolic, hormonal, perceptual, and immunological recovery. RESULTS: The available evidence suggests that in most cases this practice, as currently implemented (ie, low volume, low intensity), is unlikely to be complementary (ie, does not accelerate recovery) but is potentially compatible (ie, does not impair recovery). CONCLUSION: Overall, because the perception of such sessions may be player dependent, their programming requires an individualized approach and should take into account match dynamics (eg, fixture scheduling, playing time, travel).


Subject(s)
Athletic Performance , Resistance Training , Soccer , Humans
13.
Eur J Nutr ; 60(1): 475-491, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32390123

ABSTRACT

PURPOSE: To determine serum 25(OH)D and 1,25(OH)2D relationship with hepatitis B vaccination (study 1). Then, to investigate the effects on hepatitis B vaccination of achieving vitamin D sufficiency (serum 25(OH)D ≥ 50 nmol/L) by a unique comparison of simulated sunlight and oral vitamin D3 supplementation in wintertime (study 2). METHODS: Study 1 involved 447 adults. In study 2, 3 days after the initial hepatitis B vaccination, 119 men received either placebo, simulated sunlight (1.3 × standard-erythema dose, 3 × /week for 4 weeks and then 1 × /week for 8 weeks) or oral vitamin D3 (1000 IU/day for 4 weeks and 400 IU/day for 8 weeks). We measured hepatitis B vaccination efficacy as percentage of responders with anti-hepatitis B surface antigen immunoglobulin G ≥ 10 mIU/mL. RESULTS: In study 1, vaccine response was poorer in persons with low vitamin D status (25(OH)D ≤ 40 vs 41-71 nmol/L mean difference [95% confidence interval] - 15% [- 26, - 3%]; 1,25(OH)2D ≤ 120 vs ≥ 157 pmol/L - 12% [- 24%, - 1%]). Vaccine response was also poorer in winter than summer (- 18% [- 31%, - 3%]), when serum 25(OH)D and 1,25(OH)2D were at seasonal nadirs, and 81% of persons had serum 25(OH)D < 50 nmol/L. In study 2, vitamin D supplementation strategies were similarly effective in achieving vitamin D sufficiency from the winter vitamin D nadir in almost all (~ 95%); however, the supplementation beginning 3 days after the initial vaccination did not effect the vaccine response (vitamin D vs placebo 4% [- 21%, 14%]). CONCLUSION: Low vitamin D status at initial vaccination was associated with poorer hepatitis B vaccine response (study 1); however, vitamin D supplementation commencing 3 days after vaccination (study 2) did not influence the vaccination response. CLINICAL TRIAL REGISTRY NUMBER: Study 1 NCT02416895; https://clinicaltrials.gov/ct2/show/study/NCT02416895 ; Study 2 NCT03132103; https://clinicaltrials.gov/ct2/show/NCT03132103 .


Subject(s)
Hepatitis B Vaccines , Vitamin D Deficiency , Adult , Cholecalciferol , Dietary Supplements , Double-Blind Method , Humans , Male , Prospective Studies , Sunlight , Vitamin D , Vitamin D Deficiency/prevention & control
14.
Med Sci Sports Exerc ; 53(2): 394-403, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32701874

ABSTRACT

PURPOSE: This study aimed to investigate the effect of supplementary energy on bone formation and resorption during arduous military training in energy deficit. METHODS: Thirty male soldiers completed an 8-wk military combat course (mean ± SD, age = 25 ± 3 yr, height = 1.78 ± 0.05 m, body mass = 80.9 ± 7.7 kg). Participants received either the habitual diet (control group, n = 15) or an additional 5.1 MJ·d-1 to eliminate the energy deficit (supplemented group, n = 15). Circulating markers of bone formation and resorption, and reproductive, thyroid, and metabolic status, were measured at baseline and weeks 6 and 8 of training. RESULTS: Bone-specific alkaline phosphatase decreased in controls (-4.4 ± 1.9 µg·L-1) and increased in the supplemented group (16.0 ± 6.6 µg·L-1), between baseline and week 8 (P < 0.001). Procollagen type 1 N-terminal propeptide increased between baseline and week 6 for both groups (5.6 ± 8.1 µg·L-1, P = 0.005). Beta carboxy-terminal cross-linking telopeptide of type 1 collagen decreased between baseline and week 8 for both groups (-0.16 ± 0.20 µg·L-1, P < 0.001). Prolactin increased from baseline to week 8 for the supplemented group (148 ± 151 IU·L-1, P = 0.041). The increase in adiponectin from baseline to week 8 was higher in controls (4.3 ± 1.8 mg·L-1, P < 0.001) than that in the supplemented group (1.4 ± 1.0 mg·L-1, P < 0.001). Insulin-like growth factor binding protein-3 was lower at week 8 than baseline for controls (-461 ± 395 ng·mL-1, P < 0.001). CONCLUSION: The increase in bone-specific alkaline phosphatase, a marker of bone formation, with supplementation supports a role of energy in osteoblastic activity; the implications for skeletal adaptation and stress fracture risk are unclear. The mechanism is likely through protecting markers of metabolic, but not reproductive or thyroid, function.


Subject(s)
Bone Resorption/physiopathology , Military Personnel , Osteogenesis/physiology , Physical Conditioning, Human/physiology , Adiponectin/blood , Adult , Alkaline Phosphatase/blood , Collagen Type I/blood , Diet , Energy Metabolism , Gonadal Hormones/blood , Humans , Insulin-Like Growth Factor Binding Protein 3/blood , Male , Prolactin/blood , Thyroid Hormones/blood , Young Adult
15.
Br J Sports Med ; 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33144349

ABSTRACT

Elite athletes are particularly susceptible to sleep inadequacies, characterised by habitual short sleep (<7 hours/night) and poor sleep quality (eg, sleep fragmentation). Athletic performance is reduced by a night or more without sleep, but the influence on performance of partial sleep restriction over 1-3 nights, a more real-world scenario, remains unclear. Studies investigating sleep in athletes often suffer from inadequate experimental control, a lack of females and questions concerning the validity of the chosen sleep assessment tools. Research only scratches the surface on how sleep influences athlete health. Studies in the wider population show that habitually sleeping <7 hours/night increases susceptibility to respiratory infection. Fortunately, much is known about the salient risk factors for sleep inadequacy in athletes, enabling targeted interventions. For example, athlete sleep is influenced by sport-specific factors (relating to training, travel and competition) and non-sport factors (eg, female gender, stress and anxiety). This expert consensus culminates with a sleep toolbox for practitioners (eg, covering sleep education and screening) to mitigate these risk factors and optimise athlete sleep. A one-size-fits-all approach to athlete sleep recommendations (eg, 7-9 hours/night) is unlikely ideal for health and performance. We recommend an individualised approach that should consider the athlete's perceived sleep needs. Research is needed into the benefits of napping and sleep extension (eg, banking sleep).

16.
Exerc Immunol Rev ; 26: 8-22, 2020.
Article in English | MEDLINE | ID: mdl-32139352

ABSTRACT

Multiple studies in humans and animals have demonstrated the profound impact that exercise can have on the immune system. There is a general consensus that regular bouts of short-lasting (i.e. up to 45 minutes) moderate intensity exercise is beneficial for host immune defense, particularly in older adults and people with chronic diseases. In contrast, infection burden is reported to be high among high performance athletes and second only to injury for the number of training days lost during preparation for major sporting events. This has shaped the common view that arduous exercise (i.e. those activities practiced by high performance athletes/ military personnel that greatly exceed recommended physical activity guidelines) can suppress immunity and increase infection risk. However, the idea that exercise per se can suppress immunity and increase infection risk independently of the many other factors (e.g. anxiety, sleep disruption, travel, exposure, nutritional deficits, environmental extremes, etc.) experienced by these populations has recently been challenged. The purpose of this debate article was to solicit opposing arguments centered around this fundamental question in the exercise immunology field: can exercise affect immune function to increase susceptibility to infection. Issues that were contested between the debating groups include: (i) whether or not athletes are more susceptible to infection (mainly of the upper respiratory tract) than the general population; (ii) whether exercise per se is capable of altering immunity to increase infection risk independently of the multiple factors that activate shared immune pathways and are unique to the study populations involved; (iii) the usefulness of certain biomarkers and the interpretation of in vitro and in vivo data to monitor immune health in those who perform arduous exercise; and (iv) the quality of scientific evidence that has been used to substantiate claims for and against the potential negative effects of arduous exercise on immunity and infection risk. A key point of agreement between the groups is that infection susceptibility has a multifactorial underpinning. An issue that remains to be resolved is whether exercise per se is a causative factor of increased infection risk in athletes. This article should provide impetus for more empirical research to unravel the complex questions that surround this contentious issue in the field of exercise immunology.


Subject(s)
Disease Susceptibility/immunology , Exercise , Immunity , Infections/immunology , Animals , Athletes , Humans , Immune System
17.
Sports Med ; 49(Suppl 2): 153-168, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31691927

ABSTRACT

Respiratory and gastrointestinal infections limit an athlete's availability to train and compete. To better understand how sick an athlete will become when they have an infection, a paradigm recently adopted from ecological immunology is presented that includes the concepts of immune resistance (the ability to destroy microbes) and immune tolerance (the ability to dampen defence yet control infection at a non-damaging level). This affords a new theoretical perspective on how nutrition may influence athlete immune health; paving the way for focused research efforts on tolerogenic nutritional supplements to reduce the infection burden in athletes. Looking through this new lens clarifies why nutritional supplements targeted at improving immune resistance in athletes show limited benefits: evidence supporting the old paradigm of immune suppression in athletes is lacking. Indeed, there is limited evidence that the dietary practices of athletes suppress immunity, e.g. low-energy availability and train- or sleep-low carbohydrate. It goes without saying, irrespective of the dietary preference (omnivorous, vegetarian), that athletes are recommended to follow a balanced diet to avoid a frank deficiency of a nutrient required for proper immune function. The new theoretical perspective provided sharpens the focus on tolerogenic nutritional supplements shown to reduce the infection burden in athletes, e.g. probiotics, vitamin C and vitamin D. Further research should demonstrate the benefits of candidate tolerogenic supplements to reduce infection in athletes; without blunting training adaptations and without side effects.


Subject(s)
Dietary Supplements , Immune System/physiology , Sports Nutritional Physiological Phenomena , Ascorbic Acid/administration & dosage , Athletes , Disease Resistance/immunology , Humans , Infections/immunology , Nutritional Requirements , Probiotics/administration & dosage , Risk Factors , Vitamin D/administration & dosage
18.
Front Physiol ; 10: 1080, 2019.
Article in English | MEDLINE | ID: mdl-31555140

ABSTRACT

Heat acclimation by post-exercise hot water immersion (HWI) on six consecutive days reduces thermal strain and improves exercise performance during heat stress. However, the retention of adaptations by this method remains unknown. Typically, adaptations to short-term, exercise-heat-acclimation (<7 heat exposures) decay rapidly and are lost within 2 weeks. Short-term protocols should therefore be completed within 2 weeks of relocating to the heat; potentially compromising pre-competition/deployment training. To establish whether adaptations from post-exercise HWI are retained for up to 2 weeks, participants completed a 40-min treadmill run at 65% max in the heat (33°C, 40% RH) before (PRE) and 24 h after (POST) the HWI intervention (n = 13) and then at 1 week (WK 1) and 2 weeks (WK 2) after the HWI intervention (n = 9). Heat acclimation involved a 40-min treadmill run (65% max) on six consecutive days in temperate conditions (20°C), followed by ≤40 min HWI (40°C). Post-exercise HWI induced heat acclimation adaptations that were retained for at least 2 weeks, evidenced by reductions from PRE to WK 2 in: resting rectal core temperature (T re, -0.36 ± 0.25°C), T re at sweating onset (-0.26 ± 0.24°C), and end-exercise T re (-0.36 ± 0.37°C). Furthermore, mean skin temperature (T sk) (-0.77 ± 0.70°C), heart rate (-14 ± 10 beats⋅min-1), rating of perceived exertion (-1 ± 2), and thermal sensation (-1 ± 1) were reduced from PRE to WK 2 (P < 0.05). However, PRE to POST changes in total hemoglobin mass, blood volume, plasma volume, the drive for sweating onset, sweating sensitivity and whole body sweating rate did not reach significance (P > 0.05). As such, the reduction in thermal strain during exercise-heat stress appears likely due to the reduction in resting T re evident at POST, WK 1, and WK 2. In summary, 6 days of post-exercise HWI is an effective, practical and accessible heat acclimation strategy that induces adaptations, which are retained for at least 2 weeks. Therefore, post-exercise HWI can be completed during an athlete's pre-taper phase and does not suffer from the same practical limitations as short-term, exercise-heat-acclimation.

19.
Front Immunol ; 10: 1178, 2019.
Article in English | MEDLINE | ID: mdl-31231369

ABSTRACT

Tears have attracted interest as a minimally-invasive biological fluid from which to assess biomarkers. Lactoferrin (Lf) and lysozyme (Lys) are abundant in the tear fluid and have antimicrobial properties. Since the eye is a portal for infection transmission, assessment of immune status at the ocular surface may be clinically relevant. Therefore, the aim of this series of studies was to investigate the tear fluid antimicrobial proteins (AMPs) Lf and Lys as biomarkers of mucosal immune status. To be considered biomarkers of interest, we would expect tear AMPs to respond to stressors known to perturb immunity but be robust to confounding variables, and to be lower in participants with heightened risk or incidence of illness. We investigated the relationship between tear AMPs and upper respiratory tract infection (URTI; study 1) as well as the response of tear AMPs to prolonged treadmill exercise (study 2) and dehydration (study 3). Study 1 was a prospective cohort study conducted during the common cold season whereas studies 2 and 3 used repeated-measures crossover designs. In study 1, tear Lys concentration (C) as well as tear AMP secretion rates (SRs) were lower in individuals who reported pathogen-confirmed URTI (n = 9) throughout the observation period than in healthy, pathogen-free controls (n = 17; Lys-C, P = 0.002, d = 0.85; Lys-SR, P < 0.001, d = 1.00; Lf-SR, P = 0.018, d = 0.66). Tear AMP secretion rates were also lower in contact lens wearers. In study 2, tear AMP SRs were 42-49% lower at 30 min-1 h post-exercise vs. pre-exercise (P < 0.001, d = 0.80-0.93). Finally, in study 3, tear AMPs were not influenced by dehydration, although tear AMP concentrations (but not secretion rates) displayed diurnal variation. We conclude that Lf and Lys have potential as biomarkers of mucosal immune competence; in particular, whether these markers are lower in infection-prone individuals warrants further investigation.


Subject(s)
Biomarkers/metabolism , Dehydration/metabolism , Exercise/physiology , Lactoferrin/metabolism , Muramidase/metabolism , Respiratory Tract Infections/metabolism , Tears/metabolism , Adolescent , Adult , Female , Humans , Immunity, Mucosal , Immunocompetence , Male , Young Adult
20.
Bone ; 125: 54-60, 2019 08.
Article in English | MEDLINE | ID: mdl-31077851

ABSTRACT

PURPOSE: Short periods of basic military training increase the density and size of the tibia, but the adaptive response of bone microarchitecture, a key component of bone strength, is not fully understood. METHODS: Tibial volumetric bone mineral density (vBMD), geometry, microarchitecture and mechanical properties were measured using high-resolution peripheral quantitative computed tomography in 43 male British Army infantry recruits (mean ±â€¯SD, age 21 ±â€¯3 years, height 1.76 ±â€¯0.06 m, body mass 76.5 ±â€¯9.4 kg). Bilateral scans were performed at the distal tibia at the start (week 1) and end (week 13) of basic military training. Concurrent measures were obtained for whole-body areal bone mineral density (aBMD) using DXA, and markers of bone metabolism (ßCTX, P1NP, PTH, total 25(OH)D and ACa) from venous blood. RESULTS: Training increased areal BMD for total body (1.4%) and arms (5.2%) (P ≤ 0.031), but not legs and trunk (P ≥ 0.094). Training increased trabecular (1.3 to 1.9%) and cortical vBMD (0.6 to 0.9%), trabecular volume (1.3 to 1.9%), cortical thickness (3.2 to 5.2%) and cortical area (2.6 to 2.8%), and reduced trabecular area (-0.4 to -0.5%) in both legs (P < 0.001). No changes in trabecular number, thickness and separation, cortical porosity, stiffness or failure load were observed (P ≥ 0.188). ßCTX decreased (-0.11 µg∙l-1, P < 0.001) and total 25(OH)D increased (9.4 nmol∙l-1, P = 0.029), but no differences in P1NP, PTH or ACa were observed between timepoints (P ≥ 0.233). CONCLUSION: A short period of basic military training increased density and altered geometry of the distal tibia in male military recruits. The osteogenic effects of basic military training are likely due to an increase in unaccustomed, dynamic and high-impact loading.


Subject(s)
Bone Density/physiology , Exercise/physiology , Military Personnel/statistics & numerical data , Absorptiometry, Photon , Humans , Male , Stress, Mechanical , Tibia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...