Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Evol Biol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757509

ABSTRACT

Phenotypic plasticity helps animals to buffer the effects of increasing thermal and nutritional stress created by climate change. Plastic responses to single and combined stressors can vary among genetically diverged populations. However, less is known about how plasticity in response to combined stress varies among individuals within a population or whether such variation changes across life-history traits. This is important because individual variation within populations shapes population-level responses to environmental change. Here, we used isogenic lines of Drosophila melanogaster to assess plasticity of egg-to-adult viability and sex-specific body size for combinations of two temperatures (25°C or 28°C) and three diets (standard diet, low caloric diet, or low protein:carbohydrate ratio diet). Our results reveal substantial within-population genetic variation in plasticity for egg-to-adult viability and wing size in response to combined thermal-nutritional stress. This genetic variation in plasticity was a result of cross-environment genetic correlations that were often < 1 for both traits, as well as changes in the expression of genetic variation across environments for egg-to-adult viability. Cross-sex genetic correlations for body size were weaker when the sexes were reared in different conditions, suggesting that the genetic basis of traits may change with the environment. Further, our results suggest that plasticity in egg-to-adult viability is genetically independent from plasticity in body size. Importantly, plasticity in response to diet and temperature individually differed from plastic shifts in response to diet and temperature in combination. By quantifying plasticity and the expression of genetic variance in response to combined stress across traits, our study reveals the complexity of animal responses to environmental change, and the need for a more nuanced understanding of the potential for populations to adapt to ongoing climate change.

2.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220484, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38186272

ABSTRACT

Metabolic cold adaptation, or Krogh's rule, is the controversial hypothesis that predicts a monotonically negative relationship between metabolic rate and environmental temperature for ectotherms living along thermal clines measured at a common temperature. Macrophysiological patterns consistent with Krogh's rule are not always evident in nature, and experimentally evolved responses to temperature have failed to replicate such patterns. Hence, temperature may not be the sole driver of observed variation in metabolic rate. We tested the hypothesis that temperature, as a driver of energy demand, interacts with nutrition, a driver of energy supply, to shape the evolution of metabolic rate to produce a pattern resembling Krogh's rule. To do this, we evolved replicate lines of Drosophila melanogaster at 18, 25 or 28°C on control, low-calorie or low-protein diets. Contrary to our prediction, we observed no effect of nutrition, alone or interacting with temperature, on adult female and male metabolic rates. Moreover, support for Krogh's rule was only in females at lower temperatures. We, therefore, hypothesize that observed variation in metabolic rate along environmental clines arises from the metabolic consequences of environment-specific life-history optimization, rather than because of the direct effect of temperature on metabolic rate. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Subject(s)
Drosophila melanogaster , Nutritional Status , Female , Male , Animals , Temperature
3.
Elife ; 122023 09 06.
Article in English | MEDLINE | ID: mdl-37671937

ABSTRACT

Experiments on worms suggest that a statistical measure called the G matrix can accurately predict how phenotypes will adapt to a novel environment over multiple generations.


Subject(s)
Adaptation, Biological , Biological Evolution , Phenotype , Animals
4.
Am Nat ; 201(4): E70-E89, 2023 04.
Article in English | MEDLINE | ID: mdl-36957997

ABSTRACT

AbstractGenetic correlations concentrate genetic variation in certain directions of the multivariate phenotype. Adaptation and, under some models, plasticity is expected to occur in the direction of the phenotype containing the greatest amount of genetic variation (gmax). However, this may hinge on environmental heterogeneity, which can affect patterns of genetic variation. I use experimental evolution to test whether plasticity and phenotypic evolution follow gmax during adaptation to environments that varied in environmental heterogeneity. For >25 generations, Drosophila melanogaster populations were exposed to six homogeneous or spatially and temporally heterogeneous treatments involving hot (25°C) and cold (16°C) temperatures. Five wing traits were assayed in both temperatures. Wing morphology diverged between populations evolving in homogeneous hot and cold temperatures in a direction of the phenotype containing a large proportion of genetic variance and that aligned closely with gmax at 16°C but not at 25°C. Spatial heterogeneity produced an intermediate phenotype, which was associated with similar genetic variance across assay temperatures compared with all other treatments. Surprisingly, plasticity across assay temperatures was in a different direction to phenotypic evolution and aligned better with maternal variance than gmax. Together, these results provide experimental evidence for evolution along genetic lines of least resistance in homogeneous environments but no support for predicting plastic responses from the orientation of genetic variation. These results also suggest that spatial heterogeneity could maintain genetic variation that increases the stability of genetic variance across environments.


Subject(s)
Biological Evolution , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Genetic Variation , Adaptation, Physiological/genetics , Phenotype
5.
New Phytol ; 239(1): 374-387, 2023 07.
Article in English | MEDLINE | ID: mdl-36651081

ABSTRACT

Rapid environmental change is forcing populations into environments where plasticity will no longer maintain fitness. When populations are exposed to novel environments, evolutionary theory predicts that genetic variation in fitness will increase and should be associated with genetic differences in plasticity. If true, then genetic variation in plasticity can increase adaptive potential in novel environments, and population persistence via evolutionary rescue is more likely. To test whether genetic variation in fitness increases in novel environments and is associated with plasticity, we transplanted 8149 clones of 314 genotypes of a Sicilian daisy (Senecio chrysanthemifolius) within and outside its native range, and quantified genetic variation in fitness, and plasticity in leaf traits and gene expression. Although mean fitness declined by 87% in the novel environment, genetic variance in fitness increased threefold and was correlated with plasticity in leaf traits. High fitness genotypes showed greater plasticity in gene expression, but lower plasticity in most leaf traits. Interestingly, genotypes with the highest fitness in the novel environment had the lowest fitness at the native site. These results suggest that standing genetic variation in plasticity could help populations to persist and adapt to novel environments, despite remaining hidden in native environments.


Subject(s)
Environment , Genetic Variation , Adaptation, Physiological/genetics , Phenotype , Acclimatization , Biological Evolution
6.
Proc Natl Acad Sci U S A ; 120(1): e2203228120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36580593

ABSTRACT

Understanding the causes and limits of population divergence in phenotypic traits is a fundamental aim of evolutionary biology, with the potential to yield predictions of adaptation to environmental change. Reciprocal transplant experiments and the evaluation of optimality models suggest that local adaptation is common but not universal, and some studies suggest that trait divergence is highly constrained by genetic variances and covariances of complex phenotypes. We analyze a large database of population divergence in plants and evaluate whether evolutionary divergence scales positively with standing genetic variation within populations (evolvability), as expected if genetic constraints are evolutionarily important. We further evaluate differences in divergence and evolvability-divergence relationships between reproductive and vegetative traits and between selfing, mixed-mating, and outcrossing species, as these factors are expected to influence both patterns of selection and evolutionary potentials. Evolutionary divergence scaled positively with evolvability. Furthermore, trait divergence was greater for vegetative traits than for floral (reproductive) traits, but largely independent of the mating system. Jointly, these factors explained ~40% of the variance in evolutionary divergence. The consistency of the evolvability-divergence relationships across diverse species suggests substantial predictability of trait divergence. The results are also consistent with genetic constraints playing a role in evolutionary divergence.


Subject(s)
Adaptation, Physiological , Biological Evolution , Reproduction , Phenotype , Acclimatization , Plants/genetics , Genetic Variation , Flowers/genetics
7.
J Evol Biol ; 36(1): 264-279, 2023 01.
Article in English | MEDLINE | ID: mdl-36208146

ABSTRACT

Ongoing climate change has forced animals to face changing thermal and nutritional environments. Animals can adjust to such combinations of stressors via plasticity. Body size is a key trait influencing organismal fitness, and plasticity in this trait in response to nutritional and thermal conditions varies among genetically diverse, locally adapted populations. The standing genetic variation within a population can also influence the extent of body size plasticity. We generated near-isogenic lines from a newly collected population of Drosophila melanogaster at the mid-point of east coast Australia and assayed body size for all lines in combinations of thermal and nutritional stress. We found that isogenic lines showed distinct underlying patterns of body size plasticity in response to temperature and nutrition that were often different from the overall population response. We then tested whether plasticity in development time could explain, and therefore regulate, variation in body size to these combinations of environmental conditions. We selected five genotypes that showed the greatest variation in response to combined thermal and nutritional stress and assessed the correlation between response of developmental time and body size. While we found significant genetic variation in development time plasticity, it was a poor predictor of body size among genotypes. Our results therefore suggest that multiple developmental pathways could generate genetic variation in body size plasticity. Our study emphasizes the need to better understand genetic variation in plasticity within a population, which will help determine the potential for populations to adapt to ongoing environmental change.


Subject(s)
Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Temperature , Phenotype , Genotype , Body Size/genetics
8.
Evolution ; 76(6): 1229-1245, 2022 06.
Article in English | MEDLINE | ID: mdl-35344205

ABSTRACT

The evolution of plastic responses to external cues allows species to maintain fitness in response to the environmental variations they regularly experience. However, it remains unclear how plasticity evolves during adaptation. To test whether distinct patterns of plasticity are associated with adaptive divergence, we quantified plasticity for two closely related but ecologically divergent Sicilian daisy species (Senecio, Asteraceae). We sampled 40 representative genotypes of each species from their native range on Mt. Etna and then reciprocally transplanted multiple clones of each genotype into four field sites along an elevational gradient that included the native elevational range of each species, and two intermediate elevations. At each elevation, we quantified survival and measured leaf traits that included investment (specific leaf area), morphology, chlorophyll fluorescence, pigment content, and gene expression. Traits and differentially expressed genes that changed with elevation in one species often showed little changes in the other species, or changed in the opposite direction. As evidence of adaptive divergence, both species performed better at their native site and better than the species from the other habitat. Adaptive divergence is, therefore, associated with the evolution of distinct plastic responses to environmental variation, despite these two species sharing a recent common ancestor.


Subject(s)
Senecio , Adaptation, Physiological/genetics , Ecosystem , Genotype , Phenotype , Senecio/genetics
9.
Philos Trans R Soc Lond B Biol Sci ; 377(1848): 20210017, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35184592

ABSTRACT

Models of local adaptation to spatially varying selection predict that maximum rates of evolution are determined by the interaction between increased adaptive potential owing to increased genetic variation, and the cost genetic variation brings by reducing population fitness. We discuss existing and new results from our laboratory assays and field transplants of rainforest Drosophila and UK butterflies along environmental gradients, which try to test these predictions in natural populations. Our data suggest that: (i) local adaptation along ecological gradients is not consistently observed in time and space, especially where biotic and abiotic interactions affect both gradient steepness and genetic variation in fitness; (ii) genetic variation in fitness observed in the laboratory is only sometimes visible to selection in the field, suggesting that demographic costs can remain high without increasing adaptive potential; and (iii) antagonistic interactions between species reduce local productivity, especially at ecological margins. Such antagonistic interactions steepen gradients and may increase the cost of adaptation by increasing its dimensionality. However, where biotic interactions do evolve, rapid range expansion can follow. Future research should test how the environmental sensitivity of genotypes determines their ecological exposure, and its effects on genetic variation in fitness, to predict the probability of evolutionary rescue at ecological margins. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.


Subject(s)
Butterflies , Adaptation, Physiological/genetics , Animals , Biological Evolution , Butterflies/genetics , Drosophila/genetics , Rainforest
10.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34789571

ABSTRACT

Natural selection is responsible for much of the diversity we see in nature. Just as it drives the evolution of new traits, it can also lead to new species. However, it is unclear whether natural selection conferring adaptation to local environments can drive speciation through the evolution of hybrid sterility between populations. Here, we show that adaptive divergence in shoot gravitropism, the ability of a plant's shoot to bend upwards in response to the downward pull of gravity, contributes to the evolution of hybrid sterility in an Australian wildflower, Senecio lautus We find that shoot gravitropism has evolved multiple times in association with plant height between adjacent populations inhabiting contrasting environments, suggesting that these traits have evolved by natural selection. We directly tested this prediction using a hybrid population subjected to eight rounds of recombination and three rounds of selection in the field. Our experiments revealed that shoot gravitropism responds to natural selection in the expected direction of the locally adapted population. Using the advanced hybrid population, we discovered that individuals with extreme differences in gravitropism had more sterile crosses than individuals with similar gravitropic responses, which were largely fertile, indicating that this adaptive trait is genetically correlated with hybrid sterility. Our results suggest that natural selection can drive the evolution of locally adaptive traits that also create hybrid sterility, thus revealing an evolutionary connection between local adaptation and the origin of new species.


Subject(s)
Gravitropism/physiology , Infertility , Plant Shoots/physiology , Senecio/physiology , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Arabidopsis Proteins , Australia , Genetic Variation , Indoleacetic Acids/metabolism , Phenotype , Selection, Genetic , Senecio/genetics , Sulfurtransferases
11.
Evol Lett ; 4(4): 302-316, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32774880

ABSTRACT

Adaptation to contrasting environments occurs when advantageous alleles accumulate in each population, but it remains largely unknown whether these same advantageous alleles create genetic incompatibilities that can cause intrinsic reproductive isolation leading to speciation. Identifying alleles that underlie both adaptation and reproductive isolation is further complicated by factors such as dominance and genetic interactions among loci, which can affect both processes differently and obscure potential links between adaptation and speciation. Here, we use a combination of field and glasshouse experiments to explore the connection between adaptation and speciation while accounting for dominance and genetic interactions. We created a hybrid population with equal contributions from four contrasting ecotypes of Senecio lautus (Asteraceae), which produced hybrid genomes both before (F1 hybrid generation) and after (F4 hybrid generation) recombination among the parental ecotypes. In the glasshouse, plants in the second generation (F2 hybrid generation) showed reduced fitness as a loss of fertility. However, fertility was recovered in subsequent generations, suggesting that genetic variation underlying the fitness reduction was lost in subsequent generations. To quantify the effects of losing genetic variation at the F2 generation on the fitness of later generation hybrids, we used a reciprocal transplant to test for fitness differences between parental ecotypes, and F1 and F4 hybrids in all four parental habitats. Compared to the parental ecotypes and F1 hybrids, variance in F4 hybrid fitness was lower, and lowest in habitats that showed stronger native-ecotype advantage, suggesting that stronger natural selection for the native ecotype reduced fitness variation in the F4 hybrids. Fitness trade-offs that were present in the parental ecotypes and F1 hybrids were absent in the F4 hybrid. Together, these results suggest that the genetic variation lost after the F2 generation was likely associated with both adaptation and intrinsic reproductive isolation among ecotypes from contrasting habitats.

12.
New Phytol ; 226(2): 326-344, 2020 04.
Article in English | MEDLINE | ID: mdl-31951018

ABSTRACT

Two major developments have made it possible to use examples of ecological radiations as model systems to understand evolution and ecology. First, the integration of quantitative genetics with ecological experiments allows detailed connections to be made between genotype, phenotype, and fitness in the field. Second, dramatic advances in molecular genetics have created new possibilities for integrating field and laboratory experiments with detailed genetic sequencing. Combining these approaches allows evolutionary biologists to better study the interplay between genotype, phenotype, and fitness to explore a wide range of evolutionary processes. Here, we present the genus Senecio (Asteraceae) as an excellent system to integrate these developments, and to address fundamental questions in ecology and evolution. Senecio is one of the largest and most phenotypically diverse genera of flowering plants, containing species ranging from woody perennials to herbaceous annuals. These Senecio species exhibit many growth habits, life histories, and morphologies, and they occupy a multitude of environments. Common within the genus are species that have hybridized naturally, undergone polyploidization, and colonized diverse environments, often through rapid phenotypic divergence and adaptive radiation. These diverse experimental attributes make Senecio an attractive model system in which to address a broad range of questions in evolution and ecology.


Subject(s)
Senecio , Environment , Genotype , Models, Biological , Phenotype , Senecio/genetics
13.
New Phytol ; 226(5): 1312-1324, 2020 06.
Article in English | MEDLINE | ID: mdl-31990993

ABSTRACT

As climate change transforms seasonal patterns of temperature and precipitation, germination success at marginal temperatures will become critical for the long-term persistence of many plant species and communities. If populations vary in their environmental sensitivity to marginal temperatures across a species' geographical range, populations that respond better to future environmental extremes are likely to be critical for maintaining ecological resilience of the species. Using seeds from two to six populations for each of nine species of Mediterranean plants, we characterized patterns of among-population variation in environmental sensitivity by quantifying genotype-by-environment interactions (G × E) for germination success at temperature extremes, and under two light regimes representing conditions below and above the soil surface. For eight of nine species tested at hot and cold marginal temperatures, we observed substantial among-population variation in environmental sensitivity for germination success, and this often depended on the light treatment. Importantly, different populations often performed best at different environmental extremes. Our results demonstrate that ongoing changes in temperature regime will affect the phenology, fitness, and demography of different populations within the same species differently. We show that quantifying patterns of G × E for multiple populations, and understanding how such patterns arise, can test mechanisms that promote ecological resilience.


Subject(s)
Germination , Plant Dormancy , Climate Change , Cold Temperature , Seeds , Temperature
14.
Ecology ; 99(6): 1391-1401, 2018 06.
Article in English | MEDLINE | ID: mdl-29856491

ABSTRACT

Local adaptation can lead to genotype-by-environment interactions, which can create fitness tradeoffs in alternative environments, and govern the distribution of biodiversity across geographic landscapes. Exploring the ecological circumstances that promote the evolution of fitness tradeoffs requires identifying how natural selection operates and during which ontogenetic stages natural selection is strongest. When organisms disperse to areas outside their natural range, tradeoffs might emerge when organisms struggle to reach key life history stages, or alternatively, die shortly after reaching life history stages if there are greater risks of mortality associated with costs to developing in novel environments. We used multiple populations from four ecotypes of an Australian native wildflower (Senecio pinnatifolius) in reciprocal transplants to explore how fitness tradeoffs arise across ontogeny. We then assessed whether the survival probability for plants from native and foreign populations was contingent on reaching key developmental stages. We found that fitness tradeoffs emerged as ontogeny progressed when native plants were more successful than foreign plants at reaching seedling establishment and maturity. Native and foreign plants that failed to reach seedling establishment died at the same rate, but plants from foreign populations died quicker than native plants after reaching seedling establishment, and died quicker regardless of whether they reached sexual maturity or not. Development rates were similar for native and foreign populations, but changed depending on the environment. Together, our results suggest that natural selection for environment-specific traits early in life history created tradeoffs between contrasting environments. Plants from foreign populations were either unable to develop to seedling establishment, or they suffered increased mortality as a consequence of reaching seedling establishment. The observation of tradeoffs together with environmentally dependent changes in development rate suggest that foreign environments induce organisms to develop at a rate different from their native habitat, incurring consequences for lifetime fitness and population divergence.


Subject(s)
Adaptation, Biological , Senecio , Australia , Ecosystem , Selection, Genetic
15.
Am Nat ; 191(4): E108-E128, 2018 04.
Article in English | MEDLINE | ID: mdl-29570402

ABSTRACT

Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence. Here, we explored adaptive divergence of an Australian native wildflower by examining the alignment between divergence in phenotype mean and divergence in genetic variance among four contrasting ecotypes. We found divergence in mean multivariate phenotype along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with much of the divergence in phenotype among ecotypes associated with changes in trait combinations containing substantial levels of genetic variance. Overall, our results suggest that natural selection can alter the distribution of genetic variance underlying phenotypic traits, increasing the amount of genetic variance in the direction of natural selection and potentially facilitating rapid adaptive divergence during an adaptive radiation.


Subject(s)
Adaptation, Biological , Biological Evolution , Genetic Variation , Selection, Genetic , Senecio/genetics , Phenotype , Senecio/anatomy & histology
16.
Mol Ecol ; 26(14): 3687-3699, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28429828

ABSTRACT

The build-up of the phenotypic differences that distinguish species has long intrigued biologists. These differences are often inherited as stable polymorphisms that allow the cosegregation of adaptive variation within species, and facilitate the differentiation of complex phenotypes between species. It has been suggested that the clustering of adaptive loci could facilitate this process, but evidence is still scarce. Here, we used QTL analysis to study the genetic basis of phenotypic differentiation between coastal populations of the Australian wildflower Senecio lautus. We found that a genomic region consistently governs variation in several of the traits that distinguish these contrasting forms. Additionally, some of the taxon-specific traits controlled by this QTL cluster have evolved repeatedly during the adaptation to the same habitats, suggesting that it could mediate divergence between locally adapted forms. This cluster contains footprints of divergent natural selection across the range of S. lautus, which suggests that it could have been instrumental for the rapid diversification of this species.


Subject(s)
Genome, Plant , Quantitative Trait Loci , Selection, Genetic , Senecio/genetics , Australia , Genetic Variation , Genomics , Phenotype
17.
Evolution ; 70(9): 1979-92, 2016 09.
Article in English | MEDLINE | ID: mdl-27436057

ABSTRACT

Adaptation to contrasting environments across a heterogeneous landscape favors the formation of ecotypes by promoting ecological divergence. Patterns of fitness variation in the field can show whether natural selection drives local adaptation and ecotype formation. However, to demonstrate a link between ecological divergence and speciation, local adaptation must have consequences for reproductive isolation. Using contrasting ecotypes of an Australian wildflower, Senecio lautus in common garden experiments, hybridization experiments, and reciprocal transplants, we assessed how the environment shapes patterns of adaptation and the consequences of adaptive divergence for reproductive isolation. Local adaptation was strong between ecotypes, but weaker between populations of the same ecotype. F1 hybrids exhibited heterosis, but crosses involving one native parent performed better than those with two foreign parents. In a common garden experiment, F2 hybrids exhibited reduced fitness compared to parentals and F1 hybrids, suggesting that few genetic incompatibilities have accumulated between populations adapted to contrasting environments. Our results show how ecological differences across the landscape have created complex patterns of local adaptation and reproductive isolation, suggesting that divergent natural selection has played a fundamental role in the early stages of species diversification.


Subject(s)
Ecotype , Hybridization, Genetic , Senecio/genetics , Adaptation, Biological , Australia , Genetic Speciation , Reproductive Isolation
18.
Evolution ; 70(9): 1993-2003, 2016 09.
Article in English | MEDLINE | ID: mdl-27352911

ABSTRACT

Ecological speciation occurs when reproductive isolation evolves between populations adapting to contrasting environments. A key prediction of this process is that the fitness of hybrids between divergent populations should be reduced in each parental environment as a function of the proportion of local genes they carry, a process resulting in ecologically dependent reproductive isolation (RI). To test this prediction, we use reciprocal transplant experiments between adjacent populations of an Australian wildflower, Senecio lautus, at two locations to distinguish between ecologically dependent and intrinsic genetic reproductive barriers. These barriers can be distinguished by observing the relative fitness of reciprocal backcross hybrids, as they differ in the contribution of genes from either parent while controlling for any intrinsic fitness effects of hybridization. We show ecologically dependent fitness effects in establishment and survival of backcrosses in one transplant experiment, and growth performance in the second transplant experiment. These results suggest natural selection can create strong reproductive barriers that maintain differentiation between populations with the potential to interbreed, and implies a significant role for ecology in the evolutionary divergence of S. lautus.


Subject(s)
Ecotype , Reproductive Isolation , Selection, Genetic , Senecio/genetics , Environment , New South Wales
19.
New Phytol ; 203(1): 323-34, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24684207

ABSTRACT

Speciation with gene flow, or the evolution of reproductive isolation between interbreeding populations, remains a controversial problem in evolution. This is because gene flow erodes the adaptive differences that selection creates between populations. Here, we use a combination of common garden experiments in the field and in the glasshouse to investigate what ecological and genetic mechanisms prevent gene flow and maintain morphological and genetic differentiation between coastal parapatric populations of the Australian groundsel Senecio lautus. We discovered that in each habitat extrinsic reproductive barriers prevented gene flow, whereas intrinsic barriers in F1 hybrids were weak. In the field, herbivores played a major role in preventing gene flow, but glasshouse experiments demonstrated that soil type also created variable selective pressures both locally and on a greater geographic scale. Our experimental results demonstrate that interfertile plant populations adapting to contrasting environments may diverge as a consequence of concurrent natural selection acting against migrants and hybrids through multiple mechanisms. These results provide novel insights into the consequences of local adaptation in the origin of strong barriers to gene flow in plants, and suggest that herbivory may play an important role in the early stages of plant speciation.


Subject(s)
Biological Evolution , Gene Flow , Reproductive Isolation , Senecio/genetics , Adaptation, Physiological/genetics , Australia , Ecosystem , Ecotype , Genetic Speciation , Genetic Variation , Genetics, Population , Germination , Senecio/growth & development , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...