Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Environ Microbiol Rep ; 14(1): 164-169, 2022 02.
Article in English | MEDLINE | ID: mdl-34898023

ABSTRACT

Microbial palaeontology is largely reliant on the interpretation of geologically stable biomarkers or molecular fossils. Biomolecules that are both specific to particular groups of organisms and stable on a geological scale are invaluable for tracing the emergence and diversification of lifeforms, particularly in cases where mineral fossils are lacking. 2-Methylhopanoids and their diagenic product, 2-methylhopanes, are highly abundant bacterial membrane lipids, recoverable from samples in excess of a billion years old. In this work we used degenerate PCR, targeting 2-methylhopanoid biosynthesis genes, and sequencing to show that the ability to produce these molecules in arid biological soil crusts from deserts in diverse geographical locations (Utah, USA, and the Pilbara, Australia) is largely confined to cyanobacteria. These data suggest that 2-methylhopanes can be used as a proxy for cyanobacterial presence within these environments, contributing to our understanding of the emergence of terrestrial life on Earth.


Subject(s)
Cyanobacteria , Soil , Australia , Cyanobacteria/genetics , Fossils , Soil Microbiology
2.
Life (Basel) ; 11(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668639

ABSTRACT

Identifying microbial fossils in the rock record is a difficult task because they are often simple in morphology and can be mimicked by non-biological structures. Biosignatures are essential for identifying putative fossils as being definitively biological in origin, but are often lacking due to geologic effects which can obscure or erase such signs. As such, there is a need for robust biosignature identification techniques. Here we show new evidence for the application of trace elements as biosignatures in microfossils. We found elevated concentrations of magnesium, aluminum, manganese, iron, and strontium colocalized with carbon and sulfur in microfossils from Drummond Basin, a mid-Paleozoic hot spring deposit in Australia. Our results also suggest that trace element sequestrations from modern hot spring deposits persist through substantial host rock alteration. Because some of the oldest fossils on Earth are found in hot spring deposits and ancient hot spring deposits are also thought to occur on Mars, this biosignature technique may be utilized as a valuable tool to aid in the search for extraterrestrial life.

3.
Astrobiology ; 21(1): 1-38, 2021 01.
Article in English | MEDLINE | ID: mdl-33270491

ABSTRACT

Recent discoveries of geyserite and siliceous sinter with textural biosignatures in the ∼3.5 Ga Dresser Formation of the Pilbara Craton, Western Australia, extended the record of inhabited subaerial hot springs on Earth by ∼3 billion years, back to the time when siliceous sinter deposits are known to have formed on Mars (e.g., at Columbia Hills, Gusev Crater). Here, we present more detailed lithostratigraphic, petrographic and geochemical data collected from 100 measured sections across a ∼14 km strike length in the Dresser Formation. The data indicate deposition of a wide range of hot spring and associated deposits in a restricted interval that directly overlies a hydrothermally influenced volcanic caldera lake facies, with shoreline stromatolites. Hot spring deposits show abrupt lateral facies changes and include associated channelized clastic deposits that support fluvial, subaerial hot spring deposition. All Dresser hot spring and associated lithofacies have direct analogs with proximal, middle, and distal apron hot spring facies that are characteristic of those from New Zealand, Yellowstone National Park, USA, and Argentina. Rare earth element and yttrium geochemistry shows that the Dresser geyserite shares identical patterns with Phanerozoic hot spring sinters. This geochemical data further supports textural and contextual evidence that indicate the Dresser geyserite formed as a subaerial hot spring sinter. Further, the Dresser hot spring deposits are temporally associated with a diverse suite of textural biosignatures that indicate a thriving microbial community existed within in a Paleoarchean hot spring field. The results presented here underscore the importance of continued study of the early geological record for astrobiological research. In particular these findings reinforce the long-standing hypothesis that hydrothermal systems are optimal places to search for past life on Mars.


Subject(s)
Hot Springs , Exobiology , Fossils , Geologic Sediments , Western Australia
4.
Astrobiology ; 19(12): 1419-1432, 2019 12.
Article in English | MEDLINE | ID: mdl-31424278

ABSTRACT

This report reviews how terrestrial hot spring systems can sustain diverse and abundant microbial communities and preserve their fossil records. Hot springs are dependable water sources, even in arid environments. They deliver reduced chemical species and other solutes to more oxidized surface environments, thereby providing redox energy and nutrients. Spring waters have diverse chemical compositions, and their outflows create thermal gradients and chemical precipitates that sustain diverse microbial communities and entomb their remnants. These environments probably were important habitats for ancient benthic microbial ecosystems, and it has even been postulated that life arose in hydrothermal systems. Thermal spring communities are fossilized in deposits of travertine, siliceous sinter, and iron minerals (among others) that are found throughout the geological record back to the oldest known well-preserved rocks at 3.48 Ga. Very few are known before the Cenozoic, but it is likely that there are many more to be found. They preserve fossils ranging from microbes to trees and macroscopic animals. Features on Mars whose morphological and spectroscopic attributes resemble spring deposits on Earth have been detected in regions where geologic context is consistent with the presence of thermal springs. Such features represent targets in the search for evidence of past life on that planet.


Subject(s)
Earth, Planet , Extremophiles/physiology , Geologic Sediments/microbiology , Hot Springs/microbiology , Microbiota/physiology , Adaptation, Physiological , Biological Evolution , Exobiology/methods , Extremophiles/isolation & purification , Fossils/microbiology , Hot Springs/chemistry , Hot Temperature/adverse effects , Mars , Minerals/chemistry
5.
Geobiology ; 17(2): 151-160, 2019 03.
Article in English | MEDLINE | ID: mdl-30450841

ABSTRACT

Ooids are accretionary grains commonly reported from turbulent, shallow-water environments. They have long been associated with microbially dominated ecosystems and often occur in close proximity to, or embedded within, stromatolites, yet have historically been thought to form solely through physicochemical processes. Numerous studies have revealed both constructive and destructive roles for microbes colonizing the surfaces of modern calcitic and aragonitic ooids, but there has been little evidence for the operation of these processes during the Archean and Proterozoic, when both ooids and microbially dominated ecosystems were more widespread. Recently described carbonate ooids from the 2.9 Ga Pongola Supergroup, South Africa, include well-preserved examples composed of diagenetic dolomite interpreted to have formed from a high-Mg-calcite precursor. Spatial distributions of organic matter and elements associated with metabolic activity (N, S, and P) were interpreted as evidence for a biologically induced origin. Here, we describe exceptionally well-preserved ooids composed of calcite, collected from Earth's oldest known carbonate lake system, the ~2.72 Ga Meentheena Member (Tumbiana Formation), Fortescue Group, Western Australia. We used optical microscopy, Raman spectroscopy, XRD, SEM-EDS, LA-ICP-MS, EA-IRMS, and a novel micro-XRF instrument to investigate an oolite shoal deposited between stromatolites that preserve abundant evidence for microbial activity. We report an extremely fine, radial-concentric, calcitic microfabric that is similar to the primary and early diagenetic fabrics of calcitic ooids reported from modern temperate lakes. Early diagenetic silica has trapped isotopically light and thermally mature organic matter. The close association of organic matter with mineral phases and microfabrics related to primary and early diagenetic processes suggest incorporation of organic matter occurred during accretion, likely due to the presence of microbial biofilms. We conclude that the oldest known calcitic ooids were likely formed through processes similar to those that mediate the accretion of ooids in similar environments today, including formation within a microbial biosphere.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , Calcium Carbonate/analysis , Carbonates/analysis , Geologic Sediments/chemistry , Lakes/chemistry , Paleontology , Western Australia
6.
Nat Commun ; 8: 16149, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28812546

ABSTRACT

This corrects the article DOI: 10.1038/ncomms15263.

7.
Nat Commun ; 8: 15263, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28486437

ABSTRACT

The ca. 3.48 Ga Dresser Formation, Pilbara Craton, Western Australia, is well known for hosting some of Earth's earliest convincing evidence of life (stromatolites, fractionated sulfur/carbon isotopes, microfossils) within a dynamic, low-eruptive volcanic caldera affected by voluminous hydrothermal fluid circulation. However, missing from the caldera model were surface manifestations of the volcanic-hydrothermal system (hot springs, geysers) and their unequivocal link with life. Here we present new discoveries of hot spring deposits including geyserite, sinter terracettes and mineralized remnants of hot spring pools/vents, all of which preserve a suite of microbial biosignatures indicative of the earliest life on land. These include stromatolites, newly observed microbial palisade fabric and gas bubbles preserved in inferred mineralized, exopolymeric substance. These findings extend the known geological record of inhabited terrestrial hot springs on Earth by ∼3 billion years and offer an analogue in the search for potential fossil life in ancient Martian hot springs.

8.
Appl Environ Microbiol ; 83(13)2017 07 01.
Article in English | MEDLINE | ID: mdl-28455341

ABSTRACT

To investigate the function of 2-methylhopanoids in modern cyanobacteria, the hpnP gene coding for the radical S-adenosyl methionine (SAM) methylase protein that acts on the C-2 position of hopanoids was deleted from the filamentous cyanobacterium Nostoc punctiforme ATCC 29133S. The resulting ΔhpnP mutant lacked all 2-methylhopanoids but was found to produce much higher levels of two bacteriohopanepentol isomers than the wild type. Growth rates of the ΔhpnP mutant cultures were not significantly different from those of the wild type under standard growth conditions. Akinete formation was also not impeded by the absence of 2-methylhopanoids. The relative abundances of the different hopanoid structures in akinete-dominated cultures of the wild-type and ΔhpnP mutant strains were similar to those of vegetative cell-dominated cultures. However, the ΔhpnP mutant was found to have decreased growth rates under both pH and osmotic stress, confirming a role for 2-methylhopanoids in stress tolerance. Evidence of elevated photosystem II yield and NAD(P)H-dependent oxidoreductase activity in the ΔhpnP mutant under stress conditions, compared to the wild type, suggested that the absence of 2-methylhopanoids increases cellular metabolic rates under stress conditions.IMPORTANCE As the first group of organisms to develop oxygenic photosynthesis, Cyanobacteria are central to the evolutionary history of life on Earth and the subsequent oxygenation of the atmosphere. To investigate the origin of cyanobacteria and the emergence of oxygenic photosynthesis, geobiologists use biomarkers, the remnants of lipids produced by different organisms that are found in geologic sediments. 2-Methylhopanes have been considered indicative of cyanobacteria in some environmental settings, with the parent lipids 2-methylhopanoids being present in many contemporary cyanobacteria. We have created a Nostoc punctiforme ΔhpnP mutant strain that does not produce 2-methylhopanoids to assess the influence of 2-methylhopanoids on stress tolerance. Increased metabolic activity in the mutant under stress indicates compensatory alterations in metabolism in the absence of 2-methylhopanoids.


Subject(s)
Nostoc/metabolism , Triterpenes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Isomerism , Methylation , Nostoc/chemistry , Nostoc/genetics , Nostoc/growth & development , Osmosis , Triterpenes/chemistry
10.
Proc Natl Acad Sci U S A ; 112(7): 2087-92, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25646436

ABSTRACT

The recent discovery of a deep-water sulfur-cycling microbial biota in the ∼ 2.3-Ga Western Australian Turee Creek Group opened a new window to life's early history. We now report a second such subseafloor-inhabiting community from the Western Australian ∼ 1.8-Ga Duck Creek Formation. Permineralized in cherts formed during and soon after the 2.4- to 2.2-Ga "Great Oxidation Event," these two biotas may evidence an opportunistic response to the mid-Precambrian increase of environmental oxygen that resulted in increased production of metabolically useable sulfate and nitrate. The marked similarity of microbial morphology, habitat, and organization of these fossil communities to their modern counterparts documents exceptionally slow (hypobradytelic) change that, if paralleled by their molecular biology, would evidence extreme evolutionary stasis.


Subject(s)
Bacteria/isolation & purification , Biological Evolution , Fossils/microbiology , Sulfur/metabolism , Bacteria/metabolism
11.
Environ Microbiol ; 15(5): 1464-75, 2013 May.
Article in English | MEDLINE | ID: mdl-22712472

ABSTRACT

Families of closely related chemical compounds, which are relatively resistant to degradation, are often used as biomarkers to help trace the evolutionary history of early groups of organisms and the environments in which they lived. Biomarkers derived from hopanoid variations are particularly useful in determining bacterial community compositions. 2-Methylhopananoids have been thought to be diagnostic for cyanobacteria, and 2-methylhopanes in the geological record are taken as evidence for the presence of cyanobacteria-containing communities at the time of sediment deposition. Recently, however, doubt has been cast on the validity of 2-methylhopanes as cyanobacterial biomarkers, since non-cyanobacterial species have been shown to produce significant amounts of 2-methylhopanoids. This study examines the diversity of hpnP, the hopanoid biosynthesis gene coding for the enzyme that methylates hopanoids at the C2 position. Genomic DNA isolated from stromatolite-associated pustular and smooth microbial mat samples from Shark Bay, Western Australia, was analysed for bacterial diversity, and used to construct an hpnP clone library. A total of 117 partial hpnP clones were sequenced, representing 12 operational taxonomic units (OTUs). Phylogenetic analysis showed that 11 of these OTUs, representing 115 sequences, cluster within the cyanobacterial clade. We conclude that the dominant types of microorganisms with the detected capability of producing 2-methylhopanoids within pustular and smooth microbial mats in Shark Bay are cyanobacteria.


Subject(s)
Bays/microbiology , Biomarkers/analysis , Cyanobacteria/genetics , Genetic Variation , Amino Acid Sequence , Cyanobacteria/classification , Cyanobacteria/isolation & purification , DNA Primers/genetics , Gene Library , Molecular Sequence Data , Phylogeny , Protein Methyltransferases/genetics , RNA, Ribosomal, 16S/genetics , Sequence Alignment , Western Australia
12.
Astrobiology ; 12(12): 1143-53, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23134090

ABSTRACT

There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research-related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science.


Subject(s)
Exobiology/education , Science/education , Creativity , Humans , Mars , Research/education , Students
13.
Astrobiology ; 10(9): 899-920, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21118023

ABSTRACT

Morphologically diverse structures that may constitute organic microfossils are reported from three remote and widely separated localities assigned to the ca. 3400 Ma Strelley Pool Formation in the Pilbara Craton, Western Australia. These localities include the Panorama, Warralong, and Goldsworthy greenstone belts. From the Panorama greenstone belt, large (> 40 µm) lenticular to spindle-like structures, spheroidal structures, and mat-forming thread-like structures are found. Similar assemblages of carbonaceous structures have been identified from the Warralong and Goldsworthy greenstone belts, though these assemblages lack the thread-like structures but contain film-like structures. All structures are syngenetic with their host sedimentary black chert, which is associated with stromatolites and evaporites. The host chert is considered to have been deposited in a shallow water environment. Rigorous assessment of biogenicity (considering composition, size range, abundance, taphonomic features, and spatial distributions) suggests that cluster-forming small (<15 µm) spheroids, lenticular to spindle-like structures, and film-like structures with small spheroids are probable microfossils. Thread-like structures are more likely fossilized fibrils of biofilm, rather than microfossils. The biogenicity of solitary large (>15 µm) spheroids and simple film-like structures is less certain. Although further investigations are required to confirm the biogenicity of carbonaceous structures from the Strelley Pool Formation, this study presents evidence for the existence of morphologically complex and large microfossils at 3400 Ma in the Pilbara Craton, which can be correlated to the contemporaneous, possible microfossils reported from South Africa. Although there is still much to be learned, they should provide us with new insights into the early evolution of life and shallow water ecosystems.


Subject(s)
Fossils , Geologic Sediments/chemistry , Biological Evolution , Ecosystem , Meteoroids , Origin of Life , South Africa , Western Australia
14.
Astrobiology ; 10(4): 413-24, 2010 May.
Article in English | MEDLINE | ID: mdl-20528196

ABSTRACT

The origin of organic microstructures in the approximately 3 Ga Farrel Quartzite is controversial due to their relatively poor state of preservation, the Archean age of the cherts in which they occur, and the unusual spindle-like morphology of some of the forms. To provide more insight into the significance of these microstructures, nano-scale secondary ion mass spectrometry (NanoSIMS) maps of carbon, nitrogen, sulfur, silicon, and oxygen were obtained for spheroidal and spindle-shaped constituents of the Farrel Quartzite assemblage. Results suggest that the structures are all bona fide approximately 3 Ga microfossils. The spindles demonstrate an architecture that is remarkable for 3 Ga organisms. They are relatively large, robust, and morphologically complex. The NanoSIMS element maps corroborate their complexity by demonstrating an intricate, internal network of organic material that fills many of the spindles and extends continuously from the body of these structures into their spearlike appendages. Results from this study combine with previous morphological and chemical analyses to argue that the microstructures in the Farrel Quartzite comprise a diverse assemblage of Archean microfossils. This conclusion adds to a growing body of geochemical, stromatolitic, and morphological evidence that indicates the Archean biosphere was varied and well established by at least approximately 3 Ga. Together, the data paint a picture of Archean evolution that is one of early development of morphological and chemical complexity. The evidence for Archean evolutionary innovation may augur well for the possibility that primitive life on other planets could adapt to adverse conditions by ready development of diversity in form and biochemistry.


Subject(s)
Biodiversity , Ecosystem , Fossils , Nanostructures/chemistry , Spectrometry, Mass, Secondary Ion/methods , Nanotechnology , Time Factors , Western Australia
15.
J Proteome Res ; 8(5): 2218-25, 2009 May.
Article in English | MEDLINE | ID: mdl-19206189

ABSTRACT

Responses to changes in external salinity were examined in Halobacterium salinarum NRC-1. H. salinarum NRC-1 grows optimally at 4.3 M NaCl and is capable of growth between 2.6 and 5.1 M NaCl. Physiological changes following incubation at 2.6 M NaCl were investigated with respect to growth behavior and proteomic changes. Initial observations indicated delayed growth at low NaCl concentrations (2.6 M NaCl), and supplementation with different sugars, amino acids, or KCl to increase external osmotic pressure did not reverse these growth perturbations. To gain a more detailed insight into the adaptive responses of H. salinarum NRC-1 to changes in salinity, the proteome was characterized using iTRAQ (amine specific isobaric tagging reagents). Three hundred and nine differentially expressed proteins were shown to be associated with changes in the external sodium chloride concentration, with proteins associated with metabolism revealing the greatest response.


Subject(s)
Archaeal Proteins/analysis , Halobacterium salinarum/drug effects , Proteome/analysis , Proteomics/methods , Sodium Chloride/pharmacology , Archaeal Proteins/classification , Archaeal Proteins/metabolism , Chromatography, Liquid/methods , Dose-Response Relationship, Drug , Halobacterium salinarum/growth & development , Halobacterium salinarum/metabolism , Mass Spectrometry/methods , Proteome/classification , Proteome/metabolism , Time Factors
16.
Int J Mol Sci ; 9(12): 2622-2638, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19330097

ABSTRACT

QDs may offer significant advantages in environmental and bead-based applications where the target cells need to be discriminated above background fluorescence. We have examined the possible applications of QDs for flow cytometric measurements (FCM) by studying their excitation - emission spectra and their binding to paramagnetic beads. We labelled beads with either QDs or a commonly-used fluorochrome (FITC) and studied their fluorescence intensity by FCM. Flow cytometric comparisons indicated that the minimum fluorophore concentration required for detection of QDs above autofluorescent background was 100-fold less than for FITC.

17.
Astrobiology ; 7(4): 631-43, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17723094

ABSTRACT

Recently, halite and sulfate evaporate rocks have been discovered on Mars by the NASA rovers, Spirit and Opportunity. It is reasonable to propose that halophilic microorganisms could have potentially flourished in these settings. If so, biomolecules found in microorganisms adapted to high salinity and basic pH environments on Earth may be reliable biomarkers for detecting life on Mars. Therefore, we investigated the potential of Resonance Raman (RR) spectroscopy to detect biomarkers derived from microorganisms adapted to hypersaline environments. RR spectra were acquired using 488.0 and 514.5 nm excitation from a variety of halophilic archaea, including Halobacterium salinarum NRC-1, Halococcus morrhuae, and Natrinema pallidum. It was clearly demonstrated that RR spectra enhance the chromophore carotenoid molecules in the cell membrane with respect to the various protein and lipid cellular components. RR spectra acquired from all halophilic archaea investigated contained major features at approximately 1000, 1152, and 1505 cm(-1). The bands at 1505 cm(-1) and 1152 cm(-1) are due to in-phase C=C (nu(1) ) and C-C stretching ( nu(2) ) vibrations of the polyene chain in carotenoids. Additionally, in-plane rocking modes of CH(3) groups attached to the polyene chain coupled with C-C bonds occur in the 1000 cm(-1) region. We also investigated the RR spectral differences between bacterioruberin and bacteriorhodopsin as another potential biomarker for hypersaline environments. By comparison, the RR spectrum acquired from bacteriorhodopsin is much more complex and contains modes that can be divided into four groups: the C=C stretches (1600-1500 cm(-1)), the CCH in-plane rocks (1400-1250 cm(-1)), the C-C stretches (1250-1100 cm(-1)), and the hydrogen out-of-plane wags (1000-700 cm(-1)). RR spectroscopy was shown to be a useful tool for the analysis and remote in situ detection of carotenoids from halophilic archaea without the need for large sample sizes and complicated extractions, which are required by analytical techniques such as high performance liquid chromatography and mass spectrometry.


Subject(s)
Exobiology , Halobacteriales/isolation & purification , Halobacterium salinarum/isolation & purification , Carotenoids/analysis , Chromatography, High Pressure Liquid , Halobacteriales/chemistry , Halobacteriales/growth & development , Halobacterium salinarum/chemistry , Halobacterium salinarum/growth & development , Mars , Mass Spectrometry , Spectrum Analysis, Raman/methods , United States , United States National Aeronautics and Space Administration , beta Carotene/analysis
18.
Nature ; 441(7094): 714-8, 2006 Jun 08.
Article in English | MEDLINE | ID: mdl-16760969

ABSTRACT

The 3,430-million-year-old Strelley Pool Chert (SPC) (Pilbara Craton, Australia) is a sedimentary rock formation containing laminated structures of probable biological origin (stromatolites). Determining the biogenicity of such ancient fossils is the subject of ongoing debate. However, many obstacles to interpretation of the fossils are overcome in the SPC because of the broad extent, excellent preservation and morphological variety of its stromatolitic outcrops--which provide comprehensive palaeontological information on a scale exceeding other rocks of such age. Here we present a multi-kilometre-scale palaeontological and palaeoenvironmental study of the SPC, in which we identify seven stromatolite morphotypes--many previously undiscovered--in different parts of a peritidal carbonate platform. We undertake the first morphotype-specific analysis of the structures within their palaeoenvironment and refute contemporary abiogenic hypotheses for their formation. Finally, we argue that the diversity, complexity and environmental associations of the stromatolites describe patterns that--in similar settings throughout Earth's history--reflect the presence of organisms.


Subject(s)
Fossils , Geologic Sediments/microbiology , Models, Biological , Australia , Carbonates/chemistry , Geologic Sediments/chemistry , History, Ancient , Paleontology , Seawater , Time Factors
19.
Science ; 305(5684): 621-2, 2004 Jul 30.
Article in English | MEDLINE | ID: mdl-15286353
20.
Nature ; 423(6940): 632-5, 2003 Jun 05.
Article in English | MEDLINE | ID: mdl-12789336

ABSTRACT

Many independent lines of evidence document a large increase in the Earth's surface oxidation state 2,400 to 2,200 million years ago, and a second biospheric oxygenation 800 to 580 million years ago, just before large animals appear in the fossil record. Such a two-staged oxidation implies a unique ocean chemistry for much of the Proterozoic eon, which would have been neither completely anoxic and iron-rich as hypothesized for Archaean seas, nor fully oxic as supposed for most of the Phanerozoic eon. The redox chemistry of Proterozoic oceans has important implications for evolution, but empirical constraints on competing environmental models are scarce. Here we present an analysis of the iron chemistry of shales deposited in the marine Roper Basin, Australia, between about 1,500 and 1,400 million years ago, which record deep-water anoxia beneath oxidized surface water. The sulphur isotopic compositions of pyrites in the shales show strong variations along a palaeodepth gradient, indicating low sulphate concentrations in mid-Proterozoic oceans. Our data help to integrate a growing body of evidence favouring a long-lived intermediate state of the oceans, generated by the early Proterozoic oxygen revolution and terminated by the environmental transformation late in the Proterozoic eon.


Subject(s)
Fossils , Geologic Sediments/chemistry , Hypoxia , Oxygen/analysis , Seawater/chemistry , Sulfates/analysis , Australia , Carbonates/analysis , Iron/analysis , Isotopes , Marine Biology , Oceans and Seas , Oxidation-Reduction , Sulfides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...