Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(35): e202400730, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38634285

ABSTRACT

We present herein the synthesis, characterization and complexation of ferrocenyl-substituted MIIs (mesoionic imines) and their metal complexes. In the free MIIs, strong hydrogen bonding interactions are observed between the imine-N and the C-H bonds of the ferrocenyl substituents both in the solid state and in solution. The influence of this hydrogen bonding is so strong that complexation of the MIIs with [IrCp*Cl2]2 yields unique six-membered iridacycles via C-H-activation of the corresponding C-H-site at the Fc-substituent and not the Ph-substituent. This result is in contrast to previous reports in which always a preferential C-H activation at the phenyl substituent is observed in competitive reactions in the presence of ferrocenyl substituents. The corresponding Ir complexes formed after in-situ halide exchange reaction exist in either [Ir-I] contact or as [Ir]+I- solvent separated ion-pairs depending on the solvent polarity. The iodide coordinated and solvent separated ion-pairs display drastically different physical properties. The TEP (Tolman-electronic-parameter) of these ligands was determined and lines up with previously reported MII-ligands. The redox properties were investigated by a combination of electrochemical and spectroelectrochemical methods. We show here how non-covalent interactions can have a drastic influence on the physical and chemical properties of these new class of compounds.

2.
Inorg Chem ; 63(13): 6042-6050, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38502792

ABSTRACT

Air-stable dinuclear complexes [(bmsab)NiII(tmsab)NiII(bmsab)]3- and [(bmsab)ZnII(tmsab)ZnII(bmsab)]3- (bmsab = bis(methanesulfoneamido)benzene, tmsab = tetra(methanesulfonamido)benzene) were prepared via a synthetic route based on heteroleptic precursor complexes. The new complexes combine a distorted tetrahedral coordination environment with an open-shell bridging ligand. The ZnII species was subjected to a detailed investigation of the (spectro-)electrochemical processes. The NiII species is a rare example of a complex that combines strong exchange coupling (J > 440 cm-1) with pronounced positive zero-field splitting (D = +72 cm-1). Combining SQUID magnetometry and (HF)EPR spectroscopy with ab initio calculations allowed for accurate quantification of the exchange interaction.

3.
Chemistry ; 30(3): e202302354, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37768608

ABSTRACT

In recent years, metal complexes of pyridyl-mesoionic carbene (MIC) ligands have been reported as excellent homogeneous and molecular electrocatalysts. In combination with group 9 metals, such ligands form highly active catalysts for hydrogenation/transfer hydrogenation/hydrosilylation catalysis and electrocatalysts for dihydrogen production. Despite such progress, very little is known about the structural/electrochemical/spectroscopic properties of crucial intermediates for such catalytic reactions with these ligands: solvato complexes, reduced complexes and hydridic species. We present here a comprehensive study involving the isolation, crystallographic characterization, electrochemical/spectroelectrochemical/theoretical investigations, and in-situ reactivity studies of all the aforementioned crucial intermediates involving Cp*Rh and pyridyl-MIC ligands. A detailed mechanistic study of the precatalytic activation of [RhCp*] complexes with pyridyl-MIC ligands is presented. Intriguingly, amphiphilicity of the [RhCp*]-hydride complexes was observed, displaying the substrate dependent transfer of H+ , H or H- . To the best of our knowledge, this study is the first of its kind targeting intermediates and reactive species involving metal complexes of pyridyl-MIC ligands and investigating the interconversion amongst them.

4.
Chemistry ; 29(50): e202302317, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37675622

ABSTRACT

Invited for the cover of this issue are Biprajit Sarkar and co-workers at the University of Stuttgart and University of Freiburg. In the image, the solar flare represents the non-innocence (fluorine-specific interactions) of the counterion, and the black hole at the metal center illustrates the oxidation/electron deficiency of the Cr-center, while the electron "gets lost" in the space (oxidation agent). Read the full text of the article at 10.1002/chem.202301205.

5.
ACS Org Inorg Au ; 3(4): 184-198, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37545659

ABSTRACT

We present here new synthetic strategies for the isolation of a series of Ru(II) complexes with pyridyl-mesoionic carbene ligands (MIC) of the 1,2,3-triazole-5-ylidene type, in which the bpy ligands (bpy = 2,2'-bipyridine) of the archetypical [Ru(bpy)3]2+ have been successively replaced by one, two, or three pyridyl-MIC ligands. Three new complexes have been isolated and investigated via NMR spectroscopy and single-crystal X-ray diffraction analysis. The incorporation of one MIC unit shifts the potential of the metal-centered oxidation about 160 mV to more cathodic potential in cyclic voltammetry, demonstrating the extraordinary σ-donor ability of the pyridyl-MIC ligand, while the π-acceptor capacities are dominated by the bpy ligand, as indicated by electron paramagnetic resonance spectroelectrochemistry (EPR-SEC). The replacement of all bpy ligands by the pyridyl-MIC ligand results in an anoidic shift of the ligand-centered reduction by 390 mV compared to the well-established [Ru(bpy)3]2+ complex. In addition, UV/vis/NIR-SEC in combination with theoretical calculations provided detailed insights into the electronic structures of the respective redox states, taking into account the total number of pyridyl-MIC ligands incorporated in the Ru(II) complexes. The luminescence quantum yield and lifetimes were determined by time-resolved absorption and emission spectroscopy. An estimation of the excited state redox potentials conclusively showed that the pyridyl-MIC ligand can tune the photoredox activity of the isolated complexes to stronger photoreductants. These observations can provide new strategies for the design of photocatalysts and photosensitizers based on MICs.

6.
Chemistry ; 29(50): e202301205, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37212248

ABSTRACT

Here we present stable and crystalline chromium(I) tetracarbonyl complexes with pyridyl-MIC (MIC=mesoionic carbene) ligands and weakly coordinating anions (WCA=[Al(ORF )4 ]- , RF =C(CF3 )3 and BArF =[B(ArF )4 ]- , ArF =3,5-(CF3 )2 C6 H3 ). The complexes were fully characterized via crystallographic, spectroscopic and theoretical methods. The influence of counter anions on the IR and EPR spectroscopic properties of the CrI complexes was investigated, and the electronic innocence versus non-innocence of WCAs was probed. These are the first examples of stable and crystalline [Cr(CO)4 ]+ complexes with a chelating π - ${\pi -}$ accepting ligand, and the data presented here are of relevance for both the photochemical and the electrochemical properties of these classes of compounds.

7.
Angew Chem Int Ed Engl ; 61(25): e202200653, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35286004

ABSTRACT

We report the synthesis and the reactivity of 1,2,3-triazolin-5-imine type mesoionic imines (MIIs). The MIIs are accessible by a base-mediated cycloaddition between a substituted acetonitrile and an aromatic azide, methylation by established routes and subsequent deprotonation. C=O-stretching frequencies in MII-CO2 and -Rh(CO)2 Cl complexes were used to determine the overall donor strength. The MIIs are stronger donors than the N-heterocyclic imines (NHIs). MIIs are excellent ligands for main group elements and transition metals in which they display substituent-induced fluorine-specific interactions and undergo C-H activation. DFT calculations gave insights into the frontier orbitals of the MIIs. The calculations predict a relatively small HOMO-LUMO gap compared to other related ligands. MIIs are potentially able to act as both π-donor and π-acceptor ligands. This report highlights the potential of MIIs to display exciting properties with a huge potential for future development.

SELECTION OF CITATIONS
SEARCH DETAIL
...