Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39345608

ABSTRACT

Frontotemporal dementia is commonly caused by loss-of-function mutations in the progranulin gene. Potential therapies for this disorder have entered clinical trials, including progranulin gene therapy and drugs that reduce progranulin interactions with sortilin. Both approaches ameliorate functional and pathological abnormalities in mouse models of progranulin insufficiency. Here we investigated whether modifying the progranulin carboxy terminus to block sortilin interactions would improve the efficacy of progranulin gene therapy. We compared the effects of treating progranulin-deficient mice with gene therapy vectors expressing progranulin with intact sortilin interactions, progranulin with the carboxy terminus blocked to reduce sortilin interactions, or GFP control. We found that expressing carboxy-terminally blocked progranulin generated higher levels of progranulin both at the injection site and in more distant regions. Carboxy-terminally blocked progranulin was also more effective at ameliorating microgliosis, microglial lipofuscinosis, and lipid abnormalities including ganglioside accumulation and loss of bis(monoacylglycero)phosphate lipids. Finally, only carboxy-terminally blocked progranulin reduced plasma neurofilament light chain, a biomarker of neurodegeneration, in progranulin-deficient mice. These results demonstrate that modifying the progranulin cargo to block sortilin interactions may be important for increasing the effectiveness of progranulin gene therapy. One-sentence Summary: The effectiveness of progranulin gene therapy in models of FTD is improved by blocking the protein's carboxy terminus, which prevents sortilin binding.

2.
bioRxiv ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39211220

ABSTRACT

Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive. A screen for hippocampal dentate granule cell (DGC) synapse loss-induced factors identified a secreted phospholipase, Pla2g2f, whose expression increases in DGCs during aging. Pla2g2f deletion in DGCs exacerbates aging-associated pathophysiological changes including synapse loss, inflammatory microglia, reactive astrogliosis, impaired neurogenesis, lipid dysregulation and hippocampal-dependent memory loss. Conversely, boosting Pla2g2f in DGCs during aging is sufficient to preserve synapses, reduce inflammatory microglia and reactive gliosis, prevent hippocampal-dependent memory impairment and modify trajectory of cognitive decline. Ex vivo, neuronal-PLA2G2F mediates intercellular signaling to decrease lipid droplet burden in microglia. Boosting Pla2g2f expression in DGCs of an aging-sensitive AD model reduces amyloid load and improves memory. Our findings implicate PLA2G2F as a compensatory neuroprotective factor that maintains lipid homeostasis to counteract aging-associated cognitive decline.

3.
bioRxiv ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38562702

ABSTRACT

Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, in particular gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including Alzheimer's disease risk, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.

4.
Elife ; 122023 10 02.
Article in English | MEDLINE | ID: mdl-37782317

ABSTRACT

Triglycerides (TGs) in adipocytes provide the major stores of metabolic energy in the body. Optimal amounts of TG stores are desirable as insufficient capacity to store TG, as in lipodystrophy, or exceeding the capacity for storage, as in obesity, results in metabolic disease. We hypothesized that mice lacking TG storage in adipocytes would result in excess TG storage in cell types other than adipocytes and severe lipotoxicity accompanied by metabolic disease. To test this hypothesis, we selectively deleted both TG synthesis enzymes, DGAT1 and DGAT2, in adipocytes (ADGAT DKO mice). As expected with depleted energy stores, ADGAT DKO mice did not tolerate fasting well and, with prolonged fasting, entered torpor. However, ADGAT DKO mice were unexpectedly otherwise metabolically healthy and did not accumulate TGs ectopically or develop associated metabolic perturbations, even when fed a high-fat diet. The favorable metabolic phenotype resulted from activation of energy expenditure, in part via BAT (brown adipose tissue) activation and beiging of white adipose tissue. Thus, the ADGAT DKO mice provide a fascinating new model to study the coupling of metabolic energy storage to energy expenditure.


Subject(s)
Adipocytes , Obesity , Animals , Mice , Adipose Tissue, Brown , Diet, High-Fat/adverse effects , Triglycerides
5.
Nat Cell Biol ; 25(8): 1101-1110, 2023 08.
Article in English | MEDLINE | ID: mdl-37443287

ABSTRACT

Lipid droplets (LDs) are crucial organelles for energy storage and lipid homeostasis. Autophagy of LDs is an important pathway for their catabolism, but the molecular mechanisms mediating LD degradation by selective autophagy (lipophagy) are unknown. Here we identify spartin as a receptor localizing to LDs and interacting with core autophagy machinery, and we show that spartin is required to deliver LDs to lysosomes for triglyceride mobilization. Mutations in SPART (encoding spartin) lead to Troyer syndrome, a form of complex hereditary spastic paraplegia1. Interfering with spartin function in cultured human neurons or murine brain neurons leads to LD and triglyceride accumulation. Our identification of spartin as a lipophagy receptor, thus, suggests that impaired LD turnover contributes to Troyer syndrome development.


Subject(s)
Spastic Paraplegia, Hereditary , Mice , Humans , Animals , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism , Lipid Droplets/metabolism , Cell Cycle Proteins/metabolism , Carrier Proteins/metabolism , Autophagy , Triglycerides/metabolism , Lipid Metabolism/physiology
6.
Nat Commun ; 14(1): 3533, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316513

ABSTRACT

Cells remodel glycerophospholipid acyl chains via the Lands cycle to adjust membrane properties. Membrane-bound O-acyltransferase (MBOAT) 7 acylates lyso-phosphatidylinositol (lyso-PI) with arachidonyl-CoA. MBOAT7 mutations cause brain developmental disorders, and reduced expression is linked to fatty liver disease. In contrast, increased MBOAT7 expression is linked to hepatocellular and renal cancers. The mechanistic basis of MBOAT7 catalysis and substrate selectivity are unknown. Here, we report the structure and a model for the catalytic mechanism of human MBOAT7. Arachidonyl-CoA and lyso-PI access the catalytic center through a twisted tunnel from the cytosol and lumenal sides, respectively. N-terminal residues on the ER lumenal side determine phospholipid headgroup selectivity: swapping them between MBOATs 1, 5, and 7 converts enzyme specificity for different lyso-phospholipids. Finally, the MBOAT7 structure and virtual screening enabled identification of small-molecule inhibitors that may serve as lead compounds for pharmacologic development.


Subject(s)
Brain Diseases , Kidney Neoplasms , Humans , Phosphatidylinositols , Glycerophospholipids , Phospholipids , Catalysis , Acyltransferases/genetics , Membrane Proteins/genetics
7.
Nat Commun ; 14(1): 3100, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248213

ABSTRACT

Inhibitors of triacylglycerol (TG) synthesis have been developed to treat metabolism-related diseases, but we know little about their mechanisms of action. Here, we report cryo-EM structures of the TG-synthesis enzyme acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a membrane bound O-acyltransferase (MBOAT), in complex with two different inhibitors, T863 and DGAT1IN1. Each inhibitor binds DGAT1's fatty acyl-CoA substrate binding tunnel that opens to the cytoplasmic side of the ER. T863 blocks access to the tunnel entrance, whereas DGAT1IN1 extends further into the enzyme, with an amide group interacting with more deeply buried catalytic residues. A survey of DGAT1 inhibitors revealed that this amide group may serve as a common pharmacophore for inhibition of MBOATs. The inhibitors were minimally active against the related MBOAT acyl-CoA:cholesterol acyltransferase 1 (ACAT1), yet a single-residue mutation sensitized ACAT1 for inhibition. Collectively, our studies provide a structural foundation for developing DGAT1 and other MBOAT inhibitors.


Subject(s)
Acyltransferases , Diacylglycerol O-Acyltransferase , Acyltransferases/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Lipogenesis , Sterol O-Acyltransferase/chemistry , Triglycerides
8.
Curr Opin Struct Biol ; 80: 102606, 2023 06.
Article in English | MEDLINE | ID: mdl-37150040

ABSTRACT

Cells store lipids as a reservoir of metabolic energy and membrane component precursors in organelles called lipid droplets (LDs). LD formation occurs in the endoplasmic reticulum (ER) at LD assembly complexes (LDAC), consisting of an oligomeric core of seipin and accessory proteins. LDACs determine the sites of LD formation and are required for this process to occur normally. Seipin oligomers form a cage-like structure in the membrane that may serve to facilitate the phase transition of neutral lipids in the membrane to form an oil droplet within the LDAC. Modeling suggests that, as the LD grows, seipin anchors it to the ER bilayer and conformational shifts of seipin transmembrane segments open the LDAC dome toward the cytoplasm, enabling the emerging LD to egress from the ER.


Subject(s)
Lipid Droplets , Proteins , Lipid Droplets/metabolism , Proteins/metabolism , Endoplasmic Reticulum/metabolism , Lipids , Lipid Metabolism
9.
J Biol Chem ; 299(3): 103022, 2023 03.
Article in English | MEDLINE | ID: mdl-36805337

ABSTRACT

The endoplasmic reticulum (ER)-resident protein fat storage-inducing transmembrane protein 2 (FIT2) catalyzes acyl-CoA cleavage in vitro and is required for ER homeostasis and normal lipid storage in cells. The gene encoding FIT2 is essential for the viability of mice and worms. Whether FIT2 acts as an acyl-CoA diphosphatase in vivo and how this activity affects the liver, where the protein was discovered, are unknown. Here, we report that hepatocyte-specific Fitm2 knockout (FIT2-LKO) mice fed a chow diet exhibited elevated acyl-CoA levels, ER stress, and signs of liver injury. These mice also had more triglycerides in their livers than control littermates due, in part, to impaired secretion of triglyceride-rich lipoproteins and reduced capacity for fatty acid oxidation. We found that challenging FIT2-LKO mice with a high-fat diet worsened hepatic ER stress and liver injury but unexpectedly reversed the steatosis phenotype, similar to what is observed in FIT2-deficient cells loaded with fatty acids. Our findings support the model that FIT2 acts as an acyl-CoA diphosphatase in vivo and is crucial for normal hepatocyte function and ER homeostasis in the murine liver.


Subject(s)
Fatty Liver , Liver , Animals , Mice , Liver/metabolism , Triglycerides/metabolism , Fatty Liver/metabolism , Hepatocytes/metabolism , Endoplasmic Reticulum/metabolism , Mice, Knockout , Homeostasis , Membrane Proteins/metabolism
10.
Article in English | MEDLINE | ID: mdl-36096640

ABSTRACT

More than 60 years ago, Eugene Kennedy and coworkers elucidated the endoplasmic reticulum (ER)-based pathways of glycerolipid synthesis, including the synthesis of phospholipids and triacylglycerols (TGs). The reactions of the Kennedy pathway were identified by studying the conversion of lipid intermediates and the isolation of biochemical enzymatic activities, but the molecular basis for most of these reactions was unknown. With recent progress in the cell biology, biochemistry, and structural biology in this area, we have a much more mechanistic understanding of this pathway and its reactions. In this review, we provide an overview of molecular aspects of glycerolipid synthesis, focusing on recent insights into the synthesis of TGs. Further, we go beyond the Kennedy pathway to describe the mechanisms for storage of TG in cytosolic lipid droplets and discuss how overwhelming these pathways leads to ER stress and cellular toxicity, as seen in diseases linked to lipid overload and obesity.


Subject(s)
Lipid Droplets , Lipid Metabolism , Lipid Droplets/metabolism , Endoplasmic Reticulum/metabolism , Phospholipids/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL