Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertension ; 81(7): 1511-1523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757269

ABSTRACT

BACKGROUND: It is established that the immune system, namely T cells, plays a role in the development of hypertension and renal damage in male Dahl salt-sensitive (SS) rats, but far less is known about this relationship in females. Rats with genetically deleted T cells via CD247 gene mutation on the Dahl SS background (SSCD247-/-) were utilized to interrogate the effect of sex and T cells on salt sensitivity. METHODS: We assessed the hypertensive and kidney injury phenotypes in male versus female SS and SSCD247-/- rats challenged with 3 weeks of high salt (4.0% NaCl). Differences in T cell activation genes were examined in renal T cells from male and female SS rats, and a sex-specific adoptive transfer was performed by injecting male or female splenocytes into either male or female SSCD247-/- recipients to determine the potential contribution of T cell sex. RESULTS: The lack of functional T cells in SSCD247-/- rats significantly reduced salt-induced hypertension and proteinuria in both sexes, although SSCD247-/- females exhibited greater protection from kidney damage. Adoptive transfer of either Dahl SS male or female splenocytes into SSCD247-/- male recipients exacerbated hypertension and proteinuria compared with controls, while in SSCD247-/- female recipients, exacerbation of disease occurred only upon transfer of male, but not female, SS splenocytes. CONCLUSIONS: The absence of T cells in the SSCD247-/- normalized sex differences in blood pressure, though sex differences in renal damage persisted. Splenocyte transfer experiments demonstrated that salt sensitivity is amplified if the sex of the T cell or the recipient is male.


Subject(s)
Hypertension , Rats, Inbred Dahl , T-Lymphocytes , Animals , Male , Female , Rats , Hypertension/physiopathology , Hypertension/genetics , T-Lymphocytes/immunology , Sex Factors , Disease Models, Animal , Sodium Chloride, Dietary/adverse effects , Blood Pressure/physiology , Adoptive Transfer , Kidney/pathology , Kidney/metabolism
2.
Am J Physiol Renal Physiol ; 325(2): F214-F223, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37318993

ABSTRACT

Infiltrating T cells in the kidney amplify salt-sensitive (SS) hypertension and renal damage, but the mechanisms are not known. Genetic deletion of T cells (SSCD247-/-) or of the p67phox subunit of NADPH oxidase 2 (NOX2; SSp67phox-/-) attenuates SS hypertension in the Dahl SS rat. We hypothesized that reactive oxygen species produced by NOX2 in T cells drive the SS phenotype and renal damage. T cells were reconstituted by adoptively transferring splenocytes (∼10 million) from the Dahl SS (SS→CD247) rat, the SSp67phox-/- rat (p67phox→CD247), or only PBS (PBS→CD247) into the SSCD247-/- rat on postnatal day 5. Animals were instrumented with radiotelemeters and studied at 8 wk of age. There were no detectable differences in mean arterial pressure (MAP) or albuminuria between groups when rats were maintained on a low-salt (0.4% NaCl) diet. After 21 days of high-salt diet (4.0% NaCl), MAP and albuminuria were significantly greater in SS→CD247 rats compared with p67phox→CD247 and PBS→CD247 rats. Interestingly, there was no difference between p67phox→CD247 and PBS→CD247 rats in albuminuria or MAP after 21 days. The lack of CD3+ cells in PBS→CD247 rats and the presence of CD3+ cells in rats that received the T cell transfer demonstrated the effectiveness of the adoptive transfer. No differences in the number of CD3+, CD4+, or CD8+ cells were observed in the kidneys of SS→CD247 and p67phox→CD247 rats. These results indicate that reactive oxygen species produced by NOX2 in T cells participates in the amplification of SS hypertension and renal damage.NEW & NOTEWORTHY Our current work used the adoptive transfer of T cells that lack functional NADPH oxidase 2 into a genetically T cell-deficient Dahl salt-sensitive (SS) rat model. The results demonstrated that reactive oxygen species produced by NADPH oxidase 2 in T cells participate in the amplification of SS hypertension and associated renal damage and identifies a potential mechanism that exacerbates the salt-sensitive phenotype.


Subject(s)
Hypertension , Sodium Chloride , Rats , Animals , Albuminuria , NADPH Oxidase 2/genetics , Reactive Oxygen Species , T-Lymphocytes , Rats, Inbred Dahl , Kidney , Hypertension/genetics , Sodium Chloride, Dietary , NADPH Oxidases/genetics
3.
Am J Physiol Renal Physiol ; 325(1): F105-F120, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37227223

ABSTRACT

Histamine is involved in the regulation of immune response, vasodilation, neurotransmission, and gastric acid secretion. Although elevated histamine levels and increased expression of histamine metabolizing enzymes have been reported in renal disease, there is a gap in knowledge regarding the mechanisms of histamine-related pathways in the kidney. We report here that all four histamine receptors as well as enzymes responsible for the metabolism of histamine are expressed in human and rat kidney tissues. In this study, we hypothesized that the histaminergic system plays a role in salt-induced kidney damage in the Dahl salt-sensitive (DSS) rat, a model characterized with inflammation-driven renal lesions. To induce renal damage related to salt sensitivity, DSS rats were challenged with 21 days of a high-salt diet (4% NaCl); normal-salt diet (0.4% NaCl)-fed rats were used as a control. We observed lower histamine decarboxylase and higher histamine N-methyltransferase levels in high-salt diet-fed rats, indicative of a shift in histaminergic tone; metabolomics showed higher histamine and histidine levels in the kidneys of high-salt diet-fed rats, whereas plasma levels for both compounds were lower. Acute systemic inhibition of histamine receptor 2 in the DSS rat revealed that it lowered vasopressin receptor 2 in the kidney. In summary, we established here the existence of the local histaminergic system, revealed a shift in the renal histamine balance during salt-induced kidney damage, and provided evidence that blockage of histamine receptor 2 in the DSS rat affects water balance and urine concentrating mechanisms.NEW & NOTEWORTHY Histamine is a nitrogenous compound crucial for the inflammatory response. The knowledge regarding the renal effects of histamine is very limited. We showed that renal epithelia exhibit expression of the components of the histaminergic system. Furthermore, we revealed that there was a shift in the histaminergic tone in salt-sensitive rats when they were challenged with a high-salt diet. These data support the notion that histamine plays a role in renal epithelial physiological and pathophysiological functions.


Subject(s)
Hypertension , Kidney Diseases , Humans , Rats , Animals , Rats, Inbred Dahl , Histamine/pharmacology , Sodium Chloride/metabolism , Kidney/metabolism , Kidney Diseases/pathology , Sodium Chloride, Dietary/metabolism , Receptors, Histamine/metabolism , Blood Pressure
4.
Am J Physiol Renal Physiol ; 323(6): F666-F672, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36108053

ABSTRACT

Salt-sensitive hypertension, increases in blood pressure in response to increased salt intake, is associated with an increased risk of morbidity, mortality, and end-organ damage compared with salt-resistant hypertension. The Dahl salt-sensitive (SS) rat mimics the phenotypic characteristics observed in human hypertension when rats are challenged with a high-salt diet. Our previous work demonstrated that environmental factors, such as dietary protein, alter the severity of salt sensitivity in Dahl SS rats and should be an important consideration in experimental design. The present study investigated how the bedding on which animals were maintained (wood vs. corncob) could impact the SS phenotype in the Dahl SS rat. Animals that were maintained on corncob bedding exhibited a significant attenuation in blood pressure and renal end-organ damage in response to a high-salt diet compared with animals maintained on wood bedding. This attenuation was associated with an improvement in renal function and reduction in immune cell infiltration into the kidneys of Dahl SS rats maintained on corncob bedding. These results indicate that the type of bedding impacts the SS phenotype in the Dahl SS rat and that the bedding used in experiments can be a confounding factor to consider during data interpretation and experimental design.NEW & NOTEWORTHY Results from our present study demonstrate the profound effect of animal bedding on the severity of salt-sensitive hypertension, renal damage, and inflammation in Dahl salt-sensitive rats. This study highlights the important consideration that should be given to environmental factors, namely, the type of bedding in animal facilities, in experimental design and data interpretation.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Humans , Rats , Animals , Sodium Chloride, Dietary/metabolism , Rats, Inbred Dahl , Kidney/metabolism , Blood Pressure , Bedding and Linens/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...