Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Arch Toxicol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877156

ABSTRACT

2-Benzylbenzimidazole 'nitazene' opioids are presenting a growing threat to public health. Although various nitazenes were previously studied, systematic comparisons of the effects of different structural modifications to the 2-benzylbenzimidazole core structure on µ-opioid receptor (MOR) activity are limited. Here, we assessed in vitro structure-activity relationships of 9 previously uncharacterized nitazenes alongside known structural analogues. Specifically, we focused on MOR activation by 'ring' substituted analogues (i.e., N-pyrrolidino and N-piperidinyl modifications), 'desnitazene' analogues (lacking the 5-nitro group), and N-desethyl analogues. The results from two in vitro MOR activation assays (ß-arrestin 2 recruitment and inhibition of cAMP accumulation) showed that 'ring' modifications overall yield highly active drugs. With the exception of 4'-OH analogues (which are metabolites), N-pyrrolidino substitutions were generally more favorable for MOR activation than N-piperidine substitutions. Furthermore, removal of the 5-nitro group on the benzimidazole ring consistently caused a pronounced decrease in potency. The N-desethyl modifications showed important MOR activity, and generally resulted in a slightly lowered potency than comparator nitazenes. Intriguingly, N-desethyl isotonitazene was the exception and was consistently more potent than isotonitazene. Complementing the in vitro findings and demonstrating the high harm potential associated with many of these compounds, we describe 85 forensic cases from North America and the United Kingdom involving etodesnitazene, N-desethyl etonitazene, N-desethyl isotonitazene, N-pyrrolidino metonitazene, and N-pyrrolidino protonitazene. The low-to-sub ng/mL blood concentrations observed in most cases underscore the drugs' high potencies. Taken together, by bridging pharmacology and case data, this study may aid to increase awareness and guide legislative and public health efforts.

2.
NPJ Parkinsons Dis ; 10(1): 105, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773124

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive motor symptoms and alpha-synuclein (αsyn) aggregation in the nervous system. For unclear reasons, PD patients with certain GBA1 mutations (GBA-PD) have a more aggressive clinical progression. Two testable hypotheses that can potentially account for this phenomenon are that GBA1 mutations promote αsyn spread or drive the generation of highly pathogenic αsyn polymorphs (i.e., strains). We tested these hypotheses by treating homozygous GBA1 D409V knockin (KI) mice with human α-syn-preformed fibrils (PFFs) and treating wild-type mice (WT) with several αsyn-PFF polymorphs amplified from brain autopsy samples collected from patients with idiopathic PD and GBA-PD patients with either homozygous or heterozygous GBA1 mutations. Robust phosphorylated-αsyn (PSER129) positive pathology was observed at the injection site (i.e., the olfactory bulb granule cell layer) and throughout the brain six months following PFF injection. The PFF seeding efficiency and degree of spread were similar regardless of the mouse genotype or PFF polymorphs. We found that PFFs amplified from the human brain, regardless of patient genotype, were generally more effective seeders than wholly synthetic PFFs (i.e., non-amplified); however, PFF concentration differed between these two studies, which might also account for the observed differences. To investigate whether the molecular composition of pathology differed between different seeding conditions, we performed Biotinylation by Antibody Recognition on PSER129 (BAR-PSER129). We found that for BAR-PSER129, the endogenous PSER129 pool dominated identified interactions, and thus, very few potential interactions were explicitly identified for seeded pathology. However, we found Dynactin Subunit 2 (Dctn2) interaction was shared across all PFF conditions, and NCK Associated Protein 1 (Nckap1) and Adaptor Related Protein Complex 3 Subunit Beta 2 (Ap3b2) were unique to PFFs amplified from GBA-PD brains of heterozygous mutation carriers. In conclusion, both the genotype and αsyn strain had little effect on overall seeding efficacy and global PSER129-interactions.

3.
bioRxiv ; 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37662402

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive motor symptoms and alpha-synuclein (αsyn) aggregation in the nervous system. For unclear reasons, PD patients with certain GBA mutations (GBA-PD) have a more aggressive clinical progression. Two testable hypotheses that can potentially account for this phenomenon are that GBA1 mutations promote αsyn spread or drive the generation of highly pathogenic αsyn polymorphs (i.e., strains). We tested these hypotheses by treating homozygous GBA1 D409V knockin (KI) mice with human α-syn-preformed fibrils (PFFs) and treating wild-type mice (WT) with several αsyn-PFF polymorphs amplified from brain autopsy samples collected from patients with idiopathic PD and GBA-PD patients with either homozygous or heterozygous GBA1 mutations. Robust phosphorylated-αsyn (PSER129) positive pathology was observed at the injection site (i.e., the olfactory bulb granular layer) and throughout the brain six months following PFF injection. The PFF seeding efficiency and degree of spread were similar regardless of the mouse genotype or PFF polymorphs. We found that PFFs amplified from the human brain, regardless of patient genotype, were generally more effective seeders than wholly synthetic PFFs (i.e., non-amplified); however, PFF concentration differed between these two studies, and this might also account for the observed differences. To investigate whether the molecular composition of pathology differed between different seeding conditions, we permed Biotinylation by Antibody Recognition on PSER129 (BAR-PSER129). We found that for BAR-PSER129, the endogenous PSER129 pool dominated identified interactions, and thus, very few potential interactions were explicitly identified for seeded pathology. However, we found Dctn2 interaction was shared across all PFF conditions, and Nckap1 and Ap3b2 were unique to PFFs amplified from GBA-PD brains of heterozygous mutation carriers. In conclusion, both the genotype and αsyn strain had little effect on overall seeding efficacy and global PSER129-interactions.

4.
J Anal Toxicol ; 47(8): 753-761, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37329303

ABSTRACT

Synthetic cathinones emerged on the novel psychoactive substance (NPS) drug market as alternatives to controlled stimulants and entactogens such as methamphetamine and 3,4-methylenedioxymethamphetamine. The majority of synthetic cathinones can be subclassified into two groups: beta-keto amphetamines (i.e., NPS with the suffix "drone") and beta-keto methylenedioxyamphetamines (i.e., NPS with the suffix "lone"). Although a significant number of beta-keto amphetamines have been identified, beta-keto methylenedioxyamphetamines have dominated the NPS market, including notable drugs like methylone, butylone, N-ethyl pentylone (ephylone), eutylone and now N,N-dimethylpentylone. N,N-Dimethylpentylone, also known as dipentylone or beta-keto-dimethylbenzodioxolylpentanamine, emerged into the illicit drug supply <2 months of the international control of eutylone (September 2021). A novel standard addition method was developed and validated for N,N-dimethylpentylone, pentylone and eutylone, and 18 postmortem cases were quantitated using the method described in this manuscript. The resulting blood concentration range for N,N-dimethylpentylone in this case series was 3.3 to 970 ng/mL (median: 145 ng/mL, mean: 277 ± 283 ng/mL). Pentylone, a metabolite of N,N-dimethylpentylone, was detected in all cases (range: 1.3-420 ng/mL, median: 31 ng/mL and mean: 88 ± 127 ng/mL). Due to the rise in identifications of N,N-dimethylpentylone in postmortem investigations as well as the potential misidentification of N,N-dimethylpentylone as N-ethyl pentylone, samples testing positive for pentylone should be additionally confirmed for the presence of N,N-dimethylpentylone. Based on prior trends of new synthetic cathinones, it can be theorized that N,N-dimethylpentylone may predominate the US synthetic stimulant market for the next 1-2 years; however, given the emergence of additional closely related isomeric compounds, it is important to utilize methodology capable of differentiating N,N-dimethylpentylone from its isomers (N-isopropylbutylone, N-ethyl pentylone, N-ethyl N-methyl butylone, hexylone, N-propylbutylone, diethylone and tertylone).


Subject(s)
Central Nervous System Stimulants , Synthetic Cathinone , Forensic Toxicology/methods , Amphetamine
5.
Anal Bioanal Chem ; 415(21): 5165-5180, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37173408

ABSTRACT

The emergence of structurally diverse new synthetic opioids (NSOs) has caused the opioid crisis to spiral to new depths. Little information is available about the pharmacology of most novel opioids when they first emerge. Here, using a ß-arrestin 2 recruitment assay, we investigated the in vitro µ-opioid receptor (MOR) activation potential of dipyanone, desmethylmoramide, and acetoxymethylketobemidone (O-AMKD) - recent NSOs that are structurally related to the prescription opioids methadone and ketobemidone. Our findings indicate that dipyanone (EC50=39.9 nM; Emax=155% vs. hydromorphone) is about equally active as methadone (EC50=50.3 nM; Emax=152%), whereas desmethylmoramide (EC50=1335 nM; Emax=126%) is considerably less active. A close structural analogue of ketobemidone (EC50=134 nM; Emax=156%) and methylketobemidone (EC50=335 nM; Emax=117%), O-AMKD showed a lower potency (EC50=1262 nM) and efficacy (Emax=109%). Evaluation of the opioid substitution product buprenorphine and its metabolite norbuprenorphine confirmed the increased in vitro efficacy of the latter. In addition to in vitro characterization, this report details the first identification and full chemical analysis of dipyanone in a seized powder, as well as a postmortem toxicology case from the USA involving the drug. Dipyanone was quantified in blood (370 ng/mL), in which it was detected alongside other NSOs (e.g., 2-methyl AP-237) and novel benzodiazepines (e.g., flualprazolam). While dipyanone is currently not commonly encountered in forensic samples worldwide, its emergence is worrisome and representative of the dynamic NSO market. Graphical Abstract.


Subject(s)
Analgesics, Opioid , Prescription Drugs , Humans , Analgesics, Opioid/pharmacology , Analgesics, Opioid/chemistry , Methadone
6.
Clin Toxicol (Phila) ; 61(3): 173-180, 2023 03.
Article in English | MEDLINE | ID: mdl-37014353

ABSTRACT

INTRODUCTION: Illicit opioids, consisting largely of fentanyl, novel synthetic opioids, and adulterants, are the primary cause of drug overdose fatality in the United States. Xylazine, an alpha-2 adrenergic agonist and veterinary tranquilizer, is being increasingly detected among decedents following illicit opioid overdose. Clinical outcomes in non-fatal overdose involving xylazine are unexplored. Therefore, among emergency department patients with illicit opioid overdose, we evaluated clinical outcome differences for patients with and without xylazine exposures. METHODS: This multicenter, prospective cohort study enrolled adult patients with opioid overdose who presented to one of nine United States emergency departments between 21 September 2020, and 17 August 2021. Patients with opioid overdose were screened and included if they tested positive for an illicit opioid (heroin, fentanyl, fentanyl analog, or novel synthetic opioid) or xylazine. Patient serum was analyzed via liquid chromatography quadrupole time-of-flight mass spectroscopy to detect current illicit opioids, novel synthetic opioids, xylazine and adulterants. Overdose severity surrogate outcomes were: (a) cardiac arrest requiring cardiopulmonary resuscitation (primary); and (b) coma within 4 h of arrival (secondary). RESULTS: Three hundred and twenty-one patients met inclusion criteria: 90 tested positive for xylazine and 231 were negative. The primary outcome occurred in 37 patients, and the secondary outcome occurred in 111 patients. Using multivariable regression analysis, patients positive for xylazine had significantly lower adjusted odds of cardiac arrest (adjusted OR 0.30, 95% CI 0.10-0.92) and coma (adjusted OR 0.52, 95% CI 0.29-0.94). CONCLUSIONS: In this large multicenter cohort, cardiac arrest and coma in emergency department patients with illicit opioid overdose were significantly less severe in those testing positive for xylazine.


Subject(s)
Drug Overdose , Opiate Overdose , Adult , Humans , United States/epidemiology , Analgesics, Opioid , Xylazine , Prospective Studies , Coma , Fentanyl , Drug Overdose/diagnosis , Drug Overdose/epidemiology , Drug Overdose/therapy , Emergency Service, Hospital
7.
Psychopharmacology (Berl) ; 240(1): 185-198, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36526866

ABSTRACT

RATIONALE: Isotonitazene is an illicit synthetic opioid associated with many intoxications and fatalities. Recent studies show that isotonitazene is a potent µ-opioid receptor (MOR) agonist in vitro, but little information is available about its in vivo effects. OBJECTIVES: The aims of the present study were to investigate the pharmacokinetics of isotonitazene in rats, and relate pharmacokinetic parameters to pharmacodynamic effects. METHODS: Isotonitazene and its metabolites were identified and quantified by liquid chromatography tandem quadrupole mass spectrometry (LC-QQQ-MS). Male Sprague-Dawley rats with jugular catheters and subcutaneous (s.c.) temperature transponders received isotonitazene (3, 10, 30 µg/kg, s.c.) or its vehicle. Blood samples were drawn at 15, 30, 60, 120, and 240 min post-injection, and plasma was assayed using LC-QQQ-MS. At each blood draw, body temperature, catalepsy scores, and hot plate latencies were recorded. RESULTS: Maximum plasma concentrations of isotonitazene rose in parallel with increasing dose (range 0.2-9.8 ng/mL) and half-life ranged from 23.4 to 63.3 min. The metabolites 4'-hydroxy nitazene and N-desethyl isotonitazene were detected, and plasma concentrations were below the limit of quantitation (0.5 ng/mL) but above the limit of detection (0.1 ng/mL). Isotonitazene produced antinociception (ED50 = 4.22 µg/kg), catalepsy-like symptoms (ED50 = 8.68 µg/kg), and hypothermia (only at 30 µg/kg) that were significantly correlated with concentrations of isotonitazene. Radioligand binding in rat brain tissue revealed that isotonitazene displays nM affinity for MOR (Ki = 15.8 nM), while the N-desethyl metabolite shows even greater affinity (Ki = 2.2 nM). CONCLUSIONS: In summary, isotonitazene is a potent MOR agonist whose pharmacodynamic effects are related to circulating concentrations of the parent drug. The high potency of isotonitazene portends substantial risk to users who are exposed to the drug.


Subject(s)
Analgesics, Opioid , Catalepsy , Rats , Male , Animals , Analgesics, Opioid/pharmacology , Analgesics, Opioid/metabolism , Rats, Sprague-Dawley
8.
Clin Toxicol (Phila) ; 60(9): 1067-1069, 2022 09.
Article in English | MEDLINE | ID: mdl-35708103

ABSTRACT

BACKGROUND: Novel opioids in the illicit drug supply, such as the "nitazene" group of synthetic opioids, present an ongoing public health problem due to high potency and respiratory depressant effects. We describe three patients in whom N-piperidinyl etonitazene, a compound not previously reported in human exposure, was detected after suspected opioid overdose. Other substances that these patients tested for included fentanyl, cocaine, levamisole, phenacetin, benzoylecgonine, para-fluorofentanyl, presumptive heroin (tested as 6-monoacetylmorphine (6-MAM), morphine, and codeine), and tramadol. METHODS: This is a case series of patients with acute opioid overdose enrolled in an ongoing multicenter prospective cohort study. Data collected included reported substance use, clinical course, naloxone dose and response, outcome, and analytes detected in biological samples. RESULTS: Between October 6, 2020 and October 31, 2021, 1006 patients were screened and 412 met inclusion criteria. Of these, three patients (age 33-55) tested positive for N-piperidinyl etonitazene at one site in New Jersey over a period of three days in July 2021. Two patients reported the use of cocaine; one reported the use of heroin and alprazolam. All three patients received naloxone with improvement in their mental status (2 milligrams (mg) intranasally (IN); 8 mg IN; 0.08 mg intravenous (IV)). Two of three received subsequent doses for recurrence of opioid toxicity (0.4-0.6 mg IV). One patient was diagnosed with pneumonia and admitted to the intensive care unit, one was discharged from the Emergency Department (ED), and one used additional drug while in the ED and required admission for a naloxone infusion. None developed organ damage or sequelae. CONCLUSION: These cases represent a local outbreak of a novel "nitazene" opioid. Public health toxicosurveillance should incorporate routine testing of this emerging class of synthetic compounds in the illicit drug supply.


Subject(s)
Cocaine , Drug Overdose , Illicit Drugs , Opiate Overdose , Tramadol , Adult , Alprazolam , Analgesics, Opioid/toxicity , Benzimidazoles , Codeine , Drug Overdose/drug therapy , Fentanyl/toxicity , Heroin , Humans , Levamisole , Middle Aged , Naloxone/therapeutic use , Narcotic Antagonists/therapeutic use , Phenacetin/therapeutic use , Prospective Studies
9.
Arch Toxicol ; 96(6): 1845-1863, 2022 06.
Article in English | MEDLINE | ID: mdl-35477798

ABSTRACT

Novel synthetic opioids continue to emerge on recreational drug markets worldwide. In response to legislative bans on fentanyl analogues, non-fentanyl structural templates, such as 2-benzylbenzimidazoles ('nitazenes'), are being exploited to create new µ-opioid receptor (MOR) agonists. Here, we pharmacologically characterize an emerging cyclic analogue of etonitazene, called N-pyrrolidino etonitazene (etonitazepyne), using in vitro and in vivo methods. A series of analytically confirmed fatalities is described to complement preclinical findings. Radioligand binding assays in rat brain tissue revealed that N-pyrrolidino etonitazene has high affinity for MOR (Ki = 4.09 nM) over δ-opioid (Ki = 959 nM) and κ-opioid (Ki = 980 nM) receptors. In a MOR-ß-arrestin2 activation assay, N-pyrrolidino etonitazene displayed high potency (EC50 = 0.348 nM), similar to etonitazene (EC50 = 0.360 nM), and largely exceeding the potencies of fentanyl (EC50 = 14.9 nM) and morphine (EC50 = 290 nM). When administered s.c. to male Sprague Dawley rats, N-pyrrolidino etonitazene induced opioid-like antinociceptive, cataleptic, and thermic effects. Its potency in the hot plate test (ED50 = 0.0017 mg/kg) was tenfold and 2,000-fold greater than fentanyl (ED50 = 0.0209 mg/kg) and morphine (ED50 = 3.940 mg/kg), respectively. Twenty-one overdose fatalities associated with N-pyrrolidino etonitazene were found to contain low blood concentrations of the drug (median = 2.2 ng/mL), commonly in the context of polysubstance use. N-Pyrrolidino etonitazene was reported as a cause of death in at least two cases, demonstrating toxicity in humans. We demonstrate that N-pyrrolidino etonitazene is an extremely potent MOR agonist that is likely to present high risk to users. Continued vigilance is required to identify and characterize emergent 2-benzylbenzimidazoles, and other non-fentanyl opioids, as they appear in the marketplace.


Subject(s)
Analgesics, Opioid , Fentanyl , Analgesics, Opioid/chemistry , Animals , Benzimidazoles , Male , Morphine Derivatives , Rats , Rats, Sprague-Dawley
10.
Arch Toxicol ; 96(6): 1701-1710, 2022 06.
Article in English | MEDLINE | ID: mdl-35275255

ABSTRACT

The recent scheduling actions of fentanyl-related substances in both the United States and China have sparked the emergence and proliferation of other generations of "legal" opioids that are structurally distinct from fentanyl, including the recently emerged class of cinnamylpiperazines. In contrast to fentanyl, which contains a piperidine core and a phenethyl moiety, the primary structural components of cinnamylpiperazines are the piperazine core and a cinnamyl moiety. This manuscript reports on the toxicological profile for antemortem and postmortem cases where a cinnamylpiperazine was detected. Samples were quantitatively confirmed using liquid chromatography tandem mass spectrometry. The cases were received between February 2020 and April 2021. Concentrations of 2-methyl AP-237 from four postmortem cases ranged from 820 to 5800 ng/mL, and concentrations of AP-238 from two postmortem cases were 87 and 120 ng/mL. µ-Opioid receptor (MOR) activation potential for 2-methyl AP-237, AP-237, para-methyl AP-237, and AP-238 were studied using a ßarr2 recruitment assay. Efficacies (Emax, relative to hydromorphone) and potencies (EC50) were derived and of the compounds tested AP-238 was the most potent compound in the panel with an EC50 of 248 nM. 2-Methyl AP-237 was found to be the most efficacious drug (Emax = 125%) of the tested cinnamylpiperazines; however, it had substantially less efficacy than fentanyl. The in vitro MOR activation potential of the studied cinnamylpiperazines was lower than that of fentanyl and other novel synthetic opioids (NSOs), in line with the relatively higher concentrations observed in postmortem toxicology samples-an important observational link between in vitro pharmacology and in vivo toxicology.


Subject(s)
Analgesics, Opioid , Fentanyl , Analgesics, Opioid/chemistry , Chromatography, Liquid , Fentanyl/toxicity , Humans , Piperazines/toxicity
11.
J Anal Toxicol ; 46(3): 221-231, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-34792157

ABSTRACT

Novel psychoactive substances (NPS) continue to represent a threat to public health and safety. The number of new drugs in the latest emergent synthetic opioid class-the 2-benzylbenzimidazole analogs-also called the nitazenes-has begun to dominate the current new synthetic opioid (NSO) subclass of NPS. We describe a liquid chromatography-tandem quadrupole mass spectrometry method for the quantification of nine analogs and/or metabolites of drugs in this series: isotonitazene, metonitazene, protonitazene, etonitazene, clonitazene, flunitazene, N-desethyl isotonitazene, 5-amino isotonitazene and 4'-hydroxy nitazene in human whole blood, urine, and tissue. Samples were prepared for analysis using a basic liquid-liquid extraction. Chromatographic separation was achieved using a C-18 analytical column. Multiple reaction monitoring mode was used for detection. The calibration range for the analytes was 0.5-50 ng/mL (except for 5-amino isotonitazene, which was 1.0-50 ng/mL). The limit of detection was 0.1 ng/mL, and the limit of quantitation was 0.5 ng/mL. The method had no carryover or interferences. Ionization enhancement was observed but did not affect quantitation. All analytes passed the method validation assessment. Authentic human samples suspected of containing NSOs were obtained from a medical examiner and coroner offices, as well as partnering forensic toxicology laboratories. Isotonitazene was confirmed in 92 blood samples, and its metabolites were confirmed across various matrices. Metonitazene (n = 35), flunitazene (n = 5), protonitazene (n = 3), etodesnitazene (n = 2) and butonitazene (n = 1) were also detected in cases. These newly emerging 2-benzylbenzimidazole analogs were commonly found in combination with NPS benzodiazepines and opioids (e.g., flualprazolam, fentanyl). Nitazene analogs are potent esoteric drugs that may not be identified during routine toxicological screening, and specialized assays based on sensitive instrumentation are needed to accurately characterize these NSOs.


Subject(s)
Analgesics, Opioid , Tandem Mass Spectrometry , Analgesics, Opioid/analysis , Benzimidazoles , Chromatography, Liquid/methods , Forensic Toxicology/methods , Humans , Tandem Mass Spectrometry/methods
12.
J Exp Biol ; 224(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34694382

ABSTRACT

Ontogenetic colour change occurs in a diversity of vertebrate taxa and may be closely linked to dietary changes throughout development. In various species, red, orange and yellow colouration can be enhanced by the consumption of carotenoids. However, a paucity of long-term dietary manipulation studies means that little is known of the role of individual carotenoid compounds in ontogenetic colour change. We know even less about the influence of individual compounds at different doses (dose effects). The present study aimed to use a large dietary manipulation experiment to investigate the effect of dietary ß-carotene supplementation on colouration in southern corroboree frogs (Pseudophryne corroboree) during early post-metamorphic development. Frogs were reared on four dietary treatments with four ß-carotene concentrations (0, 1, 2 and 3 mg g-1), with frog colour measured every 8 weeks for 32 weeks. ß-Carotene was not found to influence colouration at any dose. However, colouration was found to become more conspicuous over time, including in the control treatment. Moreover, all frogs expressed colour maximally at a similar point in development. These results imply that, for our study species, (1) ß-carotene may contribute little or nothing to colouration, (2) frogs can manufacture their own colour, (3) colour development is a continual process and (4) there may have been selection for synchronised development of colour expression. We discuss the potential adaptive benefit of ontogenetic colour change in P. corroboree. More broadly, we draw attention to the potential for adaptive developmental synchrony in the expression of colouration in aposematic species.


Subject(s)
Anura , beta Carotene , Animals , Carotenoids , Color , Diet
13.
Neuropharmacology ; 199: 108800, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34547333

ABSTRACT

5F-MDMB-PICA is a popular synthetic cannabinoid associated with analytically confirmed intoxications. In vitro studies show 5F-MDMB-PICA is a potent cannabinoid-1 receptor (CB1) agonist, but little information is available about in vivo pharmacokinetics and pharmacodynamics. To this end, the present study had three aims: 1) to develop a validated method for detection of 5F-MDMB-PICA and its metabolites in rat plasma, 2) to utilize the method for investigating pharmacokinetics of 5F-MDMB-PICA in rats, and 3) to relate 5F-MDMB-PICA pharmacokinetics to pharmacodynamic effects. 5F-MDMB-PICA and its metabolites were quantified using liquid chromatography tandem mass spectrometry (LC-MS/MS) and method validation followed forensic standards. Male Sprague-Dawley rats bearing surgically implanted jugular catheters and subcutaneous (s.c.) temperature transponders received 5F-MDMB-PICA (50, 100, or 200 µg/kg, s.c.) or its vehicle. Blood samples were drawn at 15, 30, 60, 120, 240, and 480 min post-injection, and plasma was assayed using LC-MS/MS. At each blood draw, body temperature, and catalepsy scores were recorded. Maximum plasma concentrations (Cmax) of 5F-MDMB-PICA rose linearly with increasing dose (1.72-6.20 ng/mL), and plasma half-life (t1/2) ranged from 400 to 1000 min 5F-MDMB-PICA-3,3-dimethylbutanoic acid and 5OH-MDMB-PICA were the only metabolites detected, and plasma concentrations were much lower than the parent drug. 5F-MDMB-PICA induced robust hypothermia and catalepsy-like symptoms that were significantly correlated with concentrations of 5F-MDMB-PICA. Radioligand binding in rat brain membranes revealed 5F-MDMB-PICA displays high affinity for CB1 (IC50 = 2 nM) while metabolites do not. In summary, 5F-MDMB-PICA is a potent CB1 agonist in rats whose pharmacodynamic effects are related to circulating concentrations of the parent drug and not its metabolites.


Subject(s)
Cannabinoid Receptor Agonists/blood , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/blood , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/agonists , Animals , Catalepsy/chemically induced , Hypothermia/chemically induced , Male , Rats , Rats, Sprague-Dawley
14.
Drug Test Anal ; 13(10): 1697-1711, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34137194

ABSTRACT

Metonitazene is considered a new psychoactive substance (NPS) and emerging potent synthetic opioid, causing increased public health concern beginning in 2020. Metonitazene joins a growing list of new synthetic opioids (NSOs) contributing to deaths among people who use drugs in the United States and other parts of the world. Metonitazene (a 2-benzylbenzimidazole analogue) first appeared in mid-2020 in the recreational drug supply and subsequently began proliferating in death investigation casework towards the end of 2020. Screening and metabolite discovery were performed by liquid chromatography quadrupole time-of-flight mass spectrometry. Quantitative confirmation was performed by liquid chromatography tandem quadrupole mass spectrometry. Metonitazene was confirmed in 20 authentic forensic postmortem cases with an average concentration in blood at 6.3 ± 7.5 ng/ml (median: 3.8 ng/ml, range: 0.5-33 ng/ml, n = 18) and in urine at 15 ± 13 ng/ml (median: 11 ng/ml, range: 0.6-46 ng/ml, n = 14). Metonitazene was the only opioid identified in 30% of cases but was also found in combination with fentanyl (55%) and NPS benzodiazepines, opioids, and hallucinogens (45%). Medical examiners included metonitazene as a drug responsible for the cause of death, and the manner of death was always ruled to be an accident. The metabolism of metonitazene was found to be similar to that of isotonitazene, a closely related analogue. Toxicology laboratories and death investigators should ensure that metonitazene is included in forensic testing protocols, all while remaining vigilant for subsequent NSOs to emerge.


Subject(s)
Analgesics, Opioid , Chromatography, Liquid , Mass Spectrometry , Adult , Female , Humans , Male , Middle Aged , Analgesics, Opioid/analysis , Autopsy , Chromatography, Liquid/methods , Fentanyl/analysis , Forensic Toxicology/methods , Illicit Drugs/analysis , Mass Spectrometry/methods , Substance Abuse Detection/methods , United States
15.
J Pharm Pract ; 32(5): 503-508, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29591369

ABSTRACT

BACKGROUND: Patients admitted to our institution with a cerebrovascular accident (stroke) or transient ischemic attack (TIA) are referred to the pharmacist-run stroke prevention clinic (SPC) for medication and risk factor management. OBJECTIVE: The objective was to determine if patients receiving care from the SPC have better outcomes than patients who received usual care. METHODS: This was a retrospective chart review of patients referred to the SPC. At the time of stroke/TIA, before initial visit, and after last SPC visit, risk factor data was collected. Hospital readmissions were reviewed for secondary stroke/TIA, myocardial infarction (MI), and new or incidental peripheral artery disease (PAD). For patients that did not attend SPC visits, data was used as a control. RESULTS: Patients referred to the SPC from October 2012 to December 2014 were reviewed. 455 records were reviewed. The primary composite end point of readmission for stroke/TIA, myocardial infarction, and new or incidental PAD was statistically significantly lower in the SPC group than the control group (P = .013). All surrogate markers, including blood pressure, Low Density Lipoprotein, Hemoglobin A1c, and smoking status, improved in the SPC group. CONCLUSION: Pharmacists can play a role in reducing risk factors for secondary stroke/TIA and prevent future hospital admissions.


Subject(s)
Ischemic Attack, Transient/prevention & control , Pharmacists/trends , Professional Role , Secondary Prevention/trends , Stroke/prevention & control , Adult , Aged , Aged, 80 and over , Cohort Studies , Humans , Ischemic Attack, Transient/diagnosis , Middle Aged , Patient Readmission/trends , Retrospective Studies , Risk Factors , Secondary Prevention/methods , Stroke/diagnosis
16.
J Ind Microbiol Biotechnol ; 37(8): 823-30, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20454831

ABSTRACT

Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose-utilizing capabilities. It was found to have high tolerance for inhibitors such as acetic acid and sodium, which are present in pre-pulping hemicellulose extracts. Fermentation of 20 g/l xylose in the presence of 30 g/l acetic acid required a longer lag phase but overall lactic acid yield was not diminished. Similarly, fermentation of xylose in the presence of 20 g/l sodium increased the lag time but did not affect overall product yield, though 30 g/l sodium proved completely inhibitory. Fermentation of hot water-extracted Siberian larch containing 45 g/l total monosaccharides, mainly galactose and arabinose, produced 33 g/l lactic acid in 60 h and completely consumed all sugars. Small amounts of co-products were formed, including acetic acid, formic acid, and ethanol. Hemicellulose extract formed during autohydrolysis of mixed hardwoods contained mainly xylose and was converted into lactic acid with a 94% yield. Green liquor-extracted hardwood hemicellulose containing 10 g/l acetic acid and 6 g/l sodium was also completely converted into lactic acid at a 72% yield. The Bacillus coagulans MXL-9 strain was found to be well suited to production of lactic acid from lignocellulosic biomass due to its compatibility with conditions favorable to industrial enzymes and its ability to withstand inhibitors while rapidly consuming all pentose and hexose sugars of interest at high product yields.


Subject(s)
Bacillus/metabolism , Lactic Acid/metabolism , Polysaccharides/metabolism , Acetic Acid/toxicity , Bacillus/drug effects , Bacillus/isolation & purification , Ethanol/metabolism , Fermentation , Formates/metabolism , Larix/chemistry , Polysaccharides/isolation & purification , Sodium/toxicity , Soil Microbiology , Xylose/metabolism
17.
Bioresour Technol ; 101(6): 1935-40, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19944597

ABSTRACT

Extraction of hemicellulose from hardwood chips prior to pulping is a possible method for producing ethanol and acetic acid in an integrated forest bio-refinery, adding value to wood components normally relegated to boiler fuel. Hemicellulose was extracted from hardwood chips using green liquor, a pulping liquor intermediate consisting of aqueous NaOH, Na(2)CO(3), and Na(2)S, at 160 degrees C, held for 110 min in a 20 L rocking digester. The extracted liquor contained 3.7% solids and had a pH of 5.6. The organic content of the extracts was mainly xylo-oligosaccharides and acetic acid. Because it was dilute, the hemicellulose extract was concentrated by evaporation in a thin film evaporator. Concentrates from the evaporator reached levels of up to 10% solids. Inhibitors such as acetic acid and sodium were also concentrated by this method, presenting a challenge for the fermentation organisms. Fermentation experiments were conducted with Escherichia coli K011. The un-concentrated extract supported approximately 70% conversion of the initial sugars in 14 h. An extract evaporated down to 6% solids was also fermentable while a 10% solids extract was not initially fermentable. Strain conditioning was later found to enable fermentation at this level of concentration. Alternative processing schemes or inhibitor removal prior to fermentation are necessary to produce ethanol economically.


Subject(s)
Acetic Acid/chemistry , Bioreactors , Biotechnology/methods , Polysaccharides/chemistry , Sodium/chemistry , Carbohydrates/chemistry , Escherichia coli/metabolism , Ethanol/chemistry , Fermentation , Hydrogen-Ion Concentration , Hydrolysis , Organic Chemicals , Sodium Acetate , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...