Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
2.
Transpl Int ; 37: 12263, 2024.
Article in English | MEDLINE | ID: mdl-38550626

ABSTRACT

ABO-incompatible (ABOi) living kidney transplantation (KTx) is an established procedure to address the demand for kidney transplants with outcomes comparable to ABO-compatible KTx. Desensitization involves the use of immunoadsorption (IA) to eliminate preformed antibodies against the allograft. This monocentric retrospective study compares single-use antigen-selective Glycosorb® ABO columns to reusable non-antigen-specific Immunosorba® immunoglobulin adsorption columns regarding postoperative infectious complications and outcome. It includes all 138 ABOi KTx performed at Freiburg Transplant Center from 2004-2020. We compare 81 patients desensitized using antigen-specific columns (sIA) to 57 patients who received IA using non-antigen-specific columns (nsIA). We describe distribution of infections, mortality and allograft survival in both groups and use Cox proportional hazards regression to test for the association of IA type with severe infections. Desensitization with nsIA tripled the risk of severe postoperative infections (adjusted HR 3.08, 95% CI: 1.3-8.1) compared to sIA. nsIA was associated with significantly more recurring (21.4% vs. 6.2%) and severe infections (28.6% vs. 8.6%), mostly in the form of urosepsis. A significantly higher proportion of patients with sIA suffered from allograft rejection (29.6% vs. 14.0%). However, allograft survival was comparable. nsIA is associated with a two-fold risk of developing a severe postoperative infection after ABOi KTx.


Subject(s)
Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Retrospective Studies , ABO Blood-Group System , Blood Group Incompatibility , Risk Factors , Graft Rejection , Graft Survival , Living Donors
3.
Sci Adv ; 9(34): eadh5598, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37624894

ABSTRACT

Members of the NSL histone acetyltransferase complex are involved in multiorgan developmental syndromes. While the NSL complex is known for its importance in early development, its role in fully differentiated cells remains enigmatic. Using a kidney-specific model, we discovered that deletion of NSL complex members KANSL2 or KANSL3 in postmitotic podocytes led to catastrophic kidney dysfunction. Systematic comparison of two primary differentiated cell types reveals the NSL complex as a master regulator of intraciliary transport genes in both dividing and nondividing cells. NSL complex ablation led to loss of cilia and impaired sonic hedgehog pathway in ciliated fibroblasts. By contrast, nonciliated podocytes responded with altered microtubule dynamics and obliterated podocyte functions. Finally, overexpression of wild-type but not a double zinc finger (ZF-ZF) domain mutant of KANSL2 rescued the transcriptional defects, revealing a critical function of this domain in NSL complex assembly and function. Thus, the NSL complex exhibits bifurcation of functions to enable diversity of specialized outcomes in differentiated cells.


Subject(s)
Cell Nucleus , Hedgehog Proteins , Hedgehog Proteins/genetics , Gene Expression Regulation , Cell Differentiation/genetics , Fibroblasts
4.
Biochem Biophys Res Commun ; 673: 9-15, 2023 09 17.
Article in English | MEDLINE | ID: mdl-37352572

ABSTRACT

Nephronophthisis (NPH), an autosomal recessive ciliopathy, results from mutations in more than 20 different genes (NPHPs). These gene products form protein complexes that regulate trafficking within the cilium, a microtubular structure that plays a crucial role in developmental processes. Several NPHPs, including NPHP2/Inversin, have been linked to extraciliary functions. In addition to defining a specific segment of primary cilia (Inversin compartment), NPHP2 participates in planar cell polarity (PCP) signaling along with Dishevelled and Vangl family members. We used the mutant zebrafish line invssa36157, containing a stop codon at amino acid 314, to characterize tissue-specific functions of zebrafish Nphp2. The invssa36157 line exhibits mild ciliopathy phenotypes and increased glomerular and cloaca cyst formation. These mutants showed enhanced susceptibility to the simultaneous depletion of the nphp1/nphp2/nphp8 module, known to be involved in the cytoskeletal organization of epithelial cells. Notably, simultaneous depletion of zebrafish nphp1 and vangl2 led to a pronounced increase in cloaca malformations in the invssa36157 mutant embryos. Time-lapse imaging showed that the pronephric cells correctly migrated towards the ectodermal cells in these embryos, but failed to form the cloaca opening. Despite these abnormal developments, cellular fate does not seem to be affected in nphp1 and vangl2 MO-depleted invssa36157 mutants, as shown by in situ hybridizations for markers of pronephros and ectodermal cell development. However, significantly reduced apoptotic activity was observed in this double knockdown model, signifying the role of apoptosis in cloacal morphogenesis. Our findings underscore the critical interplay of nphp1, nphp2/Inversin, and vangl2 in orchestrating normal cloaca formation in zebrafish, shedding light on the complex molecular mechanisms underlying ciliopathy-associated phenotypes.


Subject(s)
Cloaca , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Cloaca/metabolism , Cell Polarity , Membrane Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
BMC Nephrol ; 24(1): 99, 2023 04 15.
Article in English | MEDLINE | ID: mdl-37061677

ABSTRACT

BACKGROUND: Despite vaccination coronavirus disease 2019 (COVID-19)-associated mortality caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains high in kidney transplant recipients. Nirmatrelvir is a protease inhibitor with activity against SARS-CoV-2. Nirmatrelvir reduces the risk for mortality and hospitalization, which is approved for treating adults at risk for severe disease. Nirmatrelvir is metabolized by the cytochrome P-450 (CYP) 3A4 isozyme CYP3A4 and is therefore co-administered with the irreversible CYP3A4 inhibitor ritonavir, which results in a drug interaction with tacrolimus. A limited number of patients with nirmatrelvir/ritonavir and tacrolimus therapy after kidney transplantation have been reported to date. It has been reported that tacrolimus was paused during the five-day nirmatrelvir/ritonavir therapy and subtherapeutic tacrolimus levels were observed after finishing nirmatrelvir/ritonavir in two patients. Therefore, optimization of tacrolimus dosing is urgently needed in transplant recipients receiving nirmatrelvir/ritonavir treatment. CASE PRESENTATION: Here, we present our first-hand experience with four patients receiving tacrolimus therapy following kidney transplantation and nirmatrelvir/ritonavir therapy due to COVID-19. Tacrolimus was paused during nirmatrelvir/ritonavir therapy in all patients, which resulted in stable therapeutic tacrolimus levels. Tacrolimus was continued directly after finishing nirmatrelvir/ritonavir to avoid subtherapeutic levels in the first patient treated. This patient received his usual tacrolimus maintenance dose, which resulted in toxic levels. Based on this observation, tacrolimus therapy was continued 24 h after finishing nirmatrelvir/ritonavir treatment at a reduced dose in the subsequent patients. In these patients, therapeutic to supratherapeutic tacrolimus levels were observed despite the therapeutic break and dose reduction. DISCUSSION AND CONCLUSIONS: Based on altered CYP3A4 metabolism, tacrolimus levels have to be closely monitored after treatment with nirmatrelvir/ritonavir. Our study suggests that tacrolimus treatment should be paused during nirmatrelvir/ritonavir medication and be continued 24 h after completing nirmatrelvir/ritonavir therapy at a reduced dose and under close monitoring. Based on the limited number of patients in this study, results must be interpreted with caution.


Subject(s)
COVID-19 , Kidney Transplantation , Adult , Humans , Cytochrome P-450 CYP3A , SARS-CoV-2 , Ritonavir/therapeutic use , Tacrolimus/therapeutic use , Transplant Recipients , COVID-19 Drug Treatment , Antiviral Agents/therapeutic use
7.
Cells ; 12(6)2023 03 08.
Article in English | MEDLINE | ID: mdl-36980176

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cancer, and inactivation of the VHL tumor suppressor gene is found in almost all cases of hereditary and sporadic ccRCCs. CcRCC is associated with the reprogramming of fatty acid metabolism, and stearoyl-CoA desaturases (SCDs) are the main enzymes controlling fatty acid composition in cells. In this study, we report that mRNA and protein expression of the stearoyl-CoA desaturase SCD5 is downregulated in VHL-deficient cell lines. Similarly, in C. elegans vhl-1 mutants, FAT-7/SCD5 activity is repressed, supporting an evolutionary conservation. SCD5 regulation by VHL depends on HIF, and loss of SCD5 promotes cell proliferation and a metabolic shift towards ceramide production. In summary, we identify a novel regulatory function of VHL in relation to SCD5 and fatty acid metabolism, and propose a new mechanism of how loss of VHL may contribute to ccRCC tumor formation and progression.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Carcinoma, Renal Cell/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Kidney Neoplasms/pathology , Cell Proliferation/genetics , Homeostasis , Lipids , Stearoyl-CoA Desaturase/genetics
8.
J Am Soc Nephrol ; 33(12): 2174-2193, 2022 12.
Article in English | MEDLINE | ID: mdl-36137753

ABSTRACT

BACKGROUND: Variants in TBC1D8B cause nephrotic syndrome. TBC1D8B is a GTPase-activating protein for Rab11 (RAB11-GAP) that interacts with nephrin, but how it controls nephrin trafficking or other podocyte functions remains unclear. METHODS: We generated a stable deletion in Tbc1d8b and used microhomology-mediated end-joining for genome editing. Ex vivo functional assays utilized slit diaphragms in podocyte-like Drosophila nephrocytes. Manipulation of endocytic regulators and transgenesis of murine Tbc1d8b provided a comprehensive functional analysis of Tbc1d8b. RESULTS: A null allele of Drosophila TBC1D8B exhibited a nephrocyte-restricted phenotype of nephrin mislocalization, similar to patients with isolated nephrotic syndrome who have variants in the gene. The protein was required for rapid nephrin turnover in nephrocytes and for endocytosis of nephrin induced by excessive Rab5 activity. The protein expressed from the Tbc1d8b locus bearing the edited tag predominantly localized to mature early and late endosomes. Tbc1d8b was required for endocytic cargo processing and degradation. Silencing Hrs, a regulator of endosomal maturation, phenocopied loss of Tbc1d8b. Low-level expression of murine TBC1D8B rescued loss of the Drosophila gene, indicating evolutionary conservation. Excessive murine TBC1D8B selectively disturbed nephrin dynamics. Finally, we discovered four novel TBC1D8B variants within a cohort of 363 patients with FSGS and validated a functional effect of two variants in Drosophila, suggesting a personalized platform for TBC1D8B-associated FSGS. CONCLUSIONS: Variants in TBC1D8B are not infrequent among patients with FSGS. TBC1D8B, functioning in endosomal maturation and degradation, is essential for nephrin trafficking.


Subject(s)
Glomerulosclerosis, Focal Segmental , Nephrotic Syndrome , Podocytes , Mice , Animals , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Drosophila , Glomerulosclerosis, Focal Segmental/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Podocytes/metabolism , Endocytosis , Endosomes/metabolism
9.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36076983

ABSTRACT

Acute kidney injury (AKI) is commonly associated with severe human diseases, and often worsens the outcome in hospitalized patients. The mammalian kidney has the ability to recover spontaneously from AKI; however, little progress has been made in the development of supportive treatments. Increasing evidence suggest that histone deacetylases (HDAC) and NF-κB promote the pathogenesis of AKI, and inhibition of Hdac activity has a protective effect in murine models of AKI. However, the role of HDAC at the early stages of recovery is unknown. We used the zebrafish pronephros model to study the role of epigenetic modifiers in the immediate repair response after injury to the tubular epithelium. Using specific inhibitors, we found that the histone deacetylase Hdac2, Hdac6, and Hdac8 activities are required for the repair via collective cell migration. We found that hdac6, hdac8, and nfkbiaa expression levels were upregulated in the repairing epithelial cells shortly after injury. Depletion of hdac6, hdac8, or nfkbiaa with morpholino oligonucleotides impaired the repair process, whereas the combined depletion of all three genes synergistically suppressed the recovery process. Furthermore, time-lapse video microscopy revealed that the lamellipodia and filopodia formation in the flanking cells was strongly reduced in hdac6-depleted embryos. Our findings suggest that Hdac activity and NF-κB are synergistically required for the immediate repair response in the zebrafish pronephros model of AKI, and the timing of HDAC inhibition might be important in developing supportive protocols in the human disease.


Subject(s)
Acute Kidney Injury , Histone Deacetylase 6/metabolism , Histone Deacetylases/metabolism , Pronephros , Zebrafish Proteins/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Animals , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , NF-kappa B , Pronephros/metabolism , Pronephros/pathology , Repressor Proteins , Zebrafish/metabolism
10.
Ann Transplant ; 27: e936514, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35971303

ABSTRACT

BACKGROUND The organ shortage and long waiting times have dramatically increased the age of potential kidney transplant recipients. The Eurotransplant Senior Program (ESP) was initiated to allocate kidneys from deceased donors aged ≥65 years to recipients with a comparable age independent of pre-transplant human leucocyte antigen (HLA) matching; however, parameters affecting the long-term benefits of this strategy remain poorly defined. MATERIAL AND METHODS We retrospectively evaluated outcome and risk factors for mortality in kidney recipients aged ≥65 years that were transplanted according to the ESP protocol relative to patients aged >50 years transplanted according to the Eurotransplant kidney allocation system (ETKAS) criteria at the University Freiburg Medical Center, Germany, between 2008 and 2018. RESULTS Graft survival, graft function, the maintenance immunosuppressive therapy, and the incidence of rejections and infections did not differ between groups. Infectious diseases were the main cause of death in both groups; however, infection-associated mortality was more than double in the ESP group, and 5-year patient survival was 61.4% in the ESP group compared to 83.2% in the ETKAS group. Multivariate analysis identified age, the number of HLA mismatches, and the CMV serostatus with a seropositive donor and negative recipient as the main risk factors for mortality. CONCLUSIONS A comparable immunosuppressive regimen used in ESP and ETKAS patients was associated with similar rejection rates and infectious disease complications, and infections were the most common cause of death in both groups. CMV-negative patients receiving an organ from a CMV-positive donor and patients with a high number of HLA mismatches require close follow-up to reduce mortality.


Subject(s)
Cytomegalovirus Infections , Kidney Transplantation , Cytomegalovirus Infections/etiology , Graft Rejection/epidemiology , Graft Survival , Humans , Immunosuppressive Agents/pharmacology , Kidney , Kidney Transplantation/adverse effects , Retrospective Studies , Tissue Donors
11.
Mol Biol Cell ; 33(13): ar116, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36044337

ABSTRACT

The MARVEL proteins CMTM4 and CMTM6 control PD-L1, thereby influencing tumor immunity. We found that defective zebrafish cmtm4 slowed the development of the posterior lateral line (pLL) by altering the Cxcr4b gradient across the pLL primordium (pLLP). Analysis in mammalian cells uncovered that CMTM4 interacted with CXCR4, altering its glycosylation pattern, but did not affect internalization or degradation of CXCR4 in the absence of its ligand CXCL12. Synchronized release of CXCR4 from the endoplasmic reticulum revealed that CMTM4 slowed CXCR4 trafficking from the endoplasmic reticulum to the plasma membrane without affecting overall cell surface expression. Altered CXCR4 trafficking reduced ligand-induced CXCR4 degradation and affected AKT but not ERK1/2 activation. CMTM4 expression, in contrast to that of CXCR4, correlated with the survival of patients with renal cell cancer in the TCGA cohort. Furthermore, we observed that cmtm4 depletion promotes the separation of cells from the pLLP cell cluster in zebrafish embryos. Collectively, our findings indicate that CMTM4 exerts general roles in the biosynthetic pathway of cell surface molecules and seems to affect CXCR4-dependent cell migration.


Subject(s)
B7-H1 Antigen , Zebrafish , Animals , B7-H1 Antigen/metabolism , Chemokine CXCL12/metabolism , Ligands , MARVEL Domain-Containing Proteins/metabolism , Mammals/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CXCR4/metabolism , Signal Transduction , Zebrafish/metabolism
12.
Int J Mol Sci ; 23(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35887219

ABSTRACT

Acute kidney injury (AKI) is a common complication of severe human diseases, resulting in increased morbidity and mortality as well as unfavorable long-term outcomes. Although the mammalian kidney is endowed with an amazing capacity to recover from AKI, little progress has been made in recent decades to facilitate recovery from AKI. To elucidate the early repair mechanisms after AKI, we employed the zebrafish pronephros injury model. Since damaged cells release large amounts of ATP and ATP-degradation products to signal apoptosis or necrosis to neighboring cells, we examined how depletion of purinergic and adenosine receptors impacts the directed cell migration that ensues immediately after a laser-induced tubular injury. We found that depletion of the zebrafish adenosine receptors adora1a, adora1b, adora2aa, and adora2ab significantly affected the repair process. Similar results were obtained after depletion of the purinergic p2ry2 receptor, which is highly expressed during zebrafish pronephros development. Released ATP is finally metabolized to inosine by adenosine deaminase. Depletion of zebrafish adenosine deaminases ada and ada2b interfered with the repair process; furthermore, combinations of ada and ada2b, or ada2a and ada2b displayed synergistic effects at low concentrations, supporting the involvement of inosine signaling in the repair process after a tubular injury. Our findings suggest that nucleotide-dependent signaling controls immediate migratory responses after tubular injury.


Subject(s)
Acute Kidney Injury , Zebrafish , Acute Kidney Injury/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Movement , Humans , Inosine , Mammals/metabolism , Nucleotides , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2Y2 , Zebrafish/metabolism
13.
Elife ; 112022 07 25.
Article in English | MEDLINE | ID: mdl-35876643

ABSTRACT

The kidneys generate about 180 l of primary urine per day by filtration of plasma. An essential part of the filtration barrier is the slit diaphragm, a multiprotein complex containing nephrin as major component. Filter dysfunction typically manifests with proteinuria and mutations in endocytosis regulating genes were discovered as causes of proteinuria. However, it is unclear how endocytosis regulates the slit diaphragm and how the filtration barrier is maintained without either protein leakage or filter clogging. Here, we study nephrin dynamics in podocyte-like nephrocytes of Drosophila and show that selective endocytosis either by dynamin- or flotillin-mediated pathways regulates a stable yet highly dynamic architecture. Short-term manipulation of endocytic functions indicates that dynamin-mediated endocytosis of ectopic nephrin restricts slit diaphragm formation spatially while flotillin-mediated turnover of nephrin within the slit diaphragm is needed to maintain filter permeability by shedding of molecules bound to nephrin in endosomes. Since slit diaphragms cannot be studied in vitro and are poorly accessible in mouse models, this is the first analysis of their dynamics within the slit diaphragm multiprotein complex. Identification of the mechanisms of slit diaphragm maintenance will help to develop novel therapies for proteinuric renal diseases that are frequently limited to symptomatic treatment.


Subject(s)
Drosophila , Podocytes , Animals , Endocytosis/physiology , Intercellular Junctions/metabolism , Mice , Podocytes/metabolism , Proteinuria/metabolism
14.
Hum Mol Genet ; 31(24): 4143-4158, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35861640

ABSTRACT

The zebrafish pronephros model, using morpholino oligonucleotides (MO) to deplete target genes, has been extensively used to characterize human ciliopathy phenotypes. Recently, discrepancies between MO and genetically defined mutants have questioned this approach. We analyzed zebrafish with mutations in the nphp1-4-8 module to determine the validity of MO-based results. While MO-mediated depletion resulted in glomerular cyst and cloaca malformation, these ciliopathy-typical manifestations were observed at a much lower frequency in zebrafish embryos with defined nphp mutations. All nphp1-4-8 mutant zebrafish were viable and displayed decreased manifestations in the next (F2) generation, lacking maternal RNA contribution. While genetic compensation was further supported by the observation that nphp4-deficient mutants became partially refractory to MO-based nphp4 depletion, zebrafish embryos, lacking one nphp gene, became more sensitive to MO-based depletion of additional nphp genes. Transcriptome analysis of nphp8 mutant embryos revealed an upregulation of the circadian clock genes cry1a and cry5. MO-mediated depletion of cry1a and cry5 caused ciliopathy phenotypes in wild-type embryos, while cry1a and cry5 depletion in maternal zygotic nphp8 mutant embryos increased the frequency of glomerular cysts compared to controls. Importantly, cry1a and cry5 rescued the nephropathy-related phenotypes in nphp1, nphp4 or nphp8-depleted zebrafish embryos. Our results reveal that nphp mutant zebrafish resemble the MO-based phenotypes, albeit at a much lower frequency. Rapid adaption through upregulation of circadian clock genes seems to ameliorate the loss of nphp genes, contributing to phenotypic differences.


Subject(s)
Ciliopathies , Cryptochromes , Zebrafish Proteins , Zebrafish , Animals , Humans , Cilia/genetics , Ciliopathies/genetics , Cryptochromes/genetics , Mutation , Zebrafish/genetics , Zebrafish Proteins/genetics
15.
Cells ; 11(13)2022 07 02.
Article in English | MEDLINE | ID: mdl-35805186

ABSTRACT

Both mTOR signaling and autophagy are important modulators of podocyte homeostasis, regeneration, and aging and have been implicated in glomerular diseases. However, the mechanistic role of these pathways for the glomerular filtration barrier remains poorly understood. We used Drosophila nephrocytes as an established podocyte model and found that inhibition of mTOR signaling resulted in increased spacing between slit diaphragms. Gain-of-function of mTOR signaling did not affect spacing, suggesting that additional cues limit the maximal slit diaphragm density. Interestingly, both activation and inhibition of mTOR signaling led to decreased nephrocyte function, indicating that a fine balance of signaling activity is needed for proper function. Furthermore, mTOR positively controlled cell size, survival, and the extent of the subcortical actin network. We also showed that basal autophagy in nephrocytes is required for survival and limits the expression of the sns (nephrin) but does not directly affect slit diaphragm formation or endocytic activity. However, using a genetic rescue approach, we demonstrated that excessive, mTOR-dependent autophagy is primarily responsible for slit diaphragm misspacing. In conclusion, we established this invertebrate podocyte model for mechanistic studies on the role of mTOR signaling and autophagy, and we discovered a direct mTOR/autophagy-dependent regulation of the slit diaphragm architecture.


Subject(s)
Drosophila Proteins , Podocytes , Animals , Autophagy , Drosophila/metabolism , Drosophila Proteins/metabolism , Podocytes/metabolism , TOR Serine-Threonine Kinases/metabolism
16.
Kidney360 ; 3(3): 506-515, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35582170

ABSTRACT

Background: IgA nephropathy (IgAN) is the most common primary glomerulonephritis in adults, which causes ESKD in ≤45% of patients in the long term. The optimal therapeutic approach remains undetermined. In this study, we report the results of a single-center retrospective analysis of patients with IgAN. Methods: We retrospectively evaluated the therapeutic approach and outcome of all patients at our center with biopsy-proven IgAN between 2000 and 2020, focusing on the effect of intravenous cyclophosphamide therapy combined with glucocorticoids ("immunosuppressive therapy group"). The control group received standard supportive care. Results: Patients in the immunosuppressive therapy group had worse kidney function before the initiation of therapy, as indicated by higher serum creatinine, more proteinuria, and a higher degree of hematuria than the control group; they also displayed a higher body mass index. The Oxford classification of IgA nephropathy (MEST-C score) suggested more inflammatory activity in the immunosuppressive therapy group, including more crescents and endocapillary hypercellularity. During the follow-up, proteinuria and hematuria decreased in both groups, and to a significantly greater extent in the immunosuppressive therapy group. Cyclophosphamide treatment significantly improved kidney function as determined by the fold-change of eGFR during the observation period. The number of infections and hospitalizations did not differ, but the incidence of diabetes was increased in the immunosuppressive therapy group. Conclusions: This study suggests immunosuppressive therapy with cyclophosphamide combined with glucocorticoids improves kidney function, proteinuria, and hematuria. The therapy was safe for infectious complications, but was associated with an increased incidence of diabetes, which might be attributable in part to the use of steroids in patients with a higher body mass index at baseline. Although immunosuppressive therapy in IgAN remains controversial, our findings suggest that at least some patients benefit from more aggressive therapy.


Subject(s)
Glomerulonephritis, IGA , Kidney Failure, Chronic , Adult , Cyclophosphamide/adverse effects , Glomerular Filtration Rate , Glomerulonephritis, IGA/drug therapy , Glucocorticoids/adverse effects , Hematuria/etiology , Humans , Immunosuppressive Agents/adverse effects , Kidney Failure, Chronic/complications , Proteinuria/drug therapy , Retrospective Studies
17.
Nat Commun ; 13(1): 2056, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440631

ABSTRACT

Several tissues contain cells with multiple motile cilia that generate a fluid or particle flow to support development and organ functions; defective motility causes human disease. Developmental cues orient motile cilia, but how cilia are locked into their final position to maintain a directional flow is not understood. Here we find that the actin cytoskeleton is highly dynamic during early development of multiciliated cells (MCCs). While apical actin bundles become increasingly more static, subapical actin filaments are nucleated from the distal tip of ciliary rootlets. Anchorage of these subapical actin filaments requires the presence of microridge-like structures formed during MCC development, and the activity of Nonmuscle Myosin II. Optogenetic manipulation of Ezrin, a core component of the microridge actin-anchoring complex, or inhibition of Myosin Light Chain Kinase interfere with rootlet anchorage and orientation. These observations identify microridge-like structures as an essential component of basal body rootlet anchoring in MCCs.


Subject(s)
Actins , Cilia , Actin Cytoskeleton , Basal Bodies , Cilia/physiology , Cytoskeleton , Humans
18.
J Am Soc Nephrol ; 33(4): 786-808, 2022 04.
Article in English | MEDLINE | ID: mdl-35260418

ABSTRACT

BACKGROUND: The cell-matrix adhesion between podocytes and the glomerular basement membrane is essential for the integrity of the kidney's filtration barrier. Despite increasing knowledge about the complexity of integrin adhesion complexes, an understanding of the regulation of these protein complexes in glomerular disease remains elusive. METHODS: We mapped the in vivo composition of the podocyte integrin adhesome. In addition, we analyzed conditional knockout mice targeting a gene (Parva) that encodes an actin-binding protein (α-parvin), and murine disease models. To evaluate podocytes in vivo, we used super-resolution microscopy, electron microscopy, multiplex immunofluorescence microscopy, and RNA sequencing. We performed functional analysis of CRISPR/Cas9-generated PARVA single knockout podocytes and PARVA and PARVB double knockout podocytes in three- and two-dimensional cultures using specific extracellular matrix ligands and micropatterns. RESULTS: We found that PARVA is essential to prevent podocyte foot process effacement, detachment from the glomerular basement membrane, and the development of FSGS. Through the use of in vitro and in vivo models, we identified an inherent PARVB-dependent compensatory module at podocyte integrin adhesion complexes, sustaining efficient mechanical linkage at the filtration barrier. Sequential genetic deletion of PARVA and PARVB induces a switch in structure and composition of integrin adhesion complexes. This redistribution of these complexes translates into a loss of the ventral actin cytoskeleton, decreased adhesion capacity, impaired mechanical resistance, and dysfunctional extracellular matrix assembly. CONCLUSIONS: The findings reveal adaptive mechanisms of podocyte integrin adhesion complexes, providing a conceptual framework for therapeutic strategies to prevent podocyte detachment in glomerular disease.


Subject(s)
Glomerular Filtration Barrier , Microfilament Proteins , Podocytes , Animals , Glomerular Filtration Barrier/metabolism , Integrins/metabolism , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Podocytes/metabolism
19.
Kidney Int ; 101(6): 1216-1231, 2022 06.
Article in English | MEDLINE | ID: mdl-35120995

ABSTRACT

Risk variants of the apolipoprotein-L1 (APOL1) gene are associated with severe kidney disease, putting homozygous carriers at risk. Since APOL1 lacks orthologs in all major model organisms, a wide range of mechanisms frequently in conflict have been described for APOL1-associated nephropathies. The genetic toolkit in Drosophila allows unique in vivo insights into disrupted cellular homeostasis. To perform a mechanistic analysis, we expressed human APOL1 control and gain-of-function kidney risk variants in the podocyte-like garland cells of Drosophila nephrocytes and a wing precursor tissue. Expression of APOL1 risk variants was found to elevate endocytic function of garland cell nephrocytes that simultaneously showed early signs of cell death. Wild-type APOL1 had a significantly milder effect, while a control transgene with deletion of the short BH3 domain showed no overt phenotype. Nephrocyte endo-lysosomal function and slit diaphragm architecture remained unaffected by APOL1 risk variants, but endoplasmic reticulum (ER) swelling, chaperone induction, and expression of the reporter Xbp1-EGFP suggested an ER stress response. Pharmacological inhibition of ER stress diminished APOL1-mediated cell death and direct ER stress induction enhanced nephrocyte endocytic function similar to expression of APOL1 risk variants. We confirmed APOL1-dependent ER stress in the Drosophila wing precursor where silencing the IRE1-dependent branch of ER stress signaling by inhibition with Xbp1-RNAi abrogated cell death, representing the first rescue of APOL1-associated cytotoxicity in vivo. Thus, we uncovered ER stress as an essential consequence of APOL1 risk variant expression in vivo in Drosophila, suggesting a central role of this pathway in the pathogenesis of APOL1-associated nephropathies.


Subject(s)
Kidney Diseases , Podocytes , Animals , Apolipoprotein L1/genetics , Drosophila/genetics , Endoplasmic Reticulum Stress/genetics , Humans , Kidney Diseases/pathology , Podocytes/pathology
20.
Cell Rep ; 38(2): 110009, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021092

ABSTRACT

Epithelial polarity is controlled by a polarity machinery that includes Rho GTPase CDC42 and Scribble/PAR. By using intestinal stem cell (ISC)-specific deletion of CDC42 in olfactomedin-4 (Olfm4)-internal ribosome entry site (IRES)-EGFP/CreERT2;CDC42flox/flox mice, we find that CDC42 loss initiated in the ISCs causes a drastic hyperproliferation of transit amplifying (TA) cells and disrupts epithelial polarity. CDC42-null crypts display expanded TA cell and diminished ISC populations, accompanied by elevated Hippo signaling via YAP/TAZ-Ereg (yes-associated protein/WW domain-containing transcription regulator protein 1-epiregulin) and mechanistic target of rapamycin (mTOR) activation, independent from canonical Wnt signaling. YAP/TAZ conditional knockout (KO) restores the balance of ISC/TA cell populations and crypt proliferation but does not rescue the polarity in CDC42-null small intestine. mTOR or epidermal growth factor receptor (EGFR) inhibitor treatment of CDC42 KO mice exhibits similar rescuing effects without affecting YAP/TAZ signaling. Inducible ablation of Scribble in intestinal epithelial cells mimics that of CDC42 KO defects, including crypt hyperplasia and Hippo signaling activation. Mammalian epithelial polarity regulates ISC/TA cell fate and proliferation via a Hippo-Ereg-mTOR cascade.


Subject(s)
Cell Polarity/physiology , Stem Cells/metabolism , cdc42 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Differentiation/physiology , Cell Lineage , Cell Polarity/genetics , Cell Proliferation/physiology , Epidermal Growth Factor/metabolism , Female , Hippo Signaling Pathway/physiology , Intestines/metabolism , Male , Mice , Mice, Inbred C57BL , Signal Transduction/physiology , Stem Cells/physiology , TOR Serine-Threonine Kinases/metabolism , Wnt Signaling Pathway/physiology , cdc42 GTP-Binding Protein/physiology
SELECTION OF CITATIONS
SEARCH DETAIL