Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
2.
Proteomics ; 24(3-4): e2200403, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37787899

ABSTRACT

Although Top-down (TD) proteomics techniques, aimed at the analysis of intact proteins and proteoforms, are becoming increasingly popular, efforts are needed at different levels to generalise their adoption. In this context, there are numerous improvements that are possible in the area of open science practices, including a greater application of the FAIR (Findable, Accessible, Interoperable, and Reusable) data principles. These include, for example, increased data sharing practices and readily available open data standards. Additionally, the field would benefit from the development of open data analysis workflows that can enable data reuse of public datasets, something that is increasingly common in other proteomics fields.


Subject(s)
Proteins , Proteomics , Proteomics/methods , Proteins/analysis , Workflow
3.
J Proteome Res ; 22(2): 287-301, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36626722

ABSTRACT

The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies (CVs) for the proteomics community and other fields supported by mass spectrometry since its inception 20 years ago. Here we describe the general operation of the PSI, including its leadership, working groups, yearly workshops, and the document process by which proposals are thoroughly and publicly reviewed in order to be ratified as PSI standards. We briefly describe the current state of the many existing PSI standards, some of which remain the same as when originally developed, some of which have undergone subsequent revisions, and some of which have become obsolete. Then the set of proposals currently being developed are described, with an open call to the community for participation in the forging of the next generation of standards. Finally, we describe some synergies and collaborations with other organizations and look to the future in how the PSI will continue to promote the open sharing of data and thus accelerate the progress of the field of proteomics.


Subject(s)
Proteome , Proteomics , Humans , Reference Standards , Vocabulary, Controlled , Mass Spectrometry , Databases, Protein
4.
Sci Data ; 9(1): 335, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701420

ABSTRACT

The number of mass spectrometry (MS)-based proteomics datasets in the public domain keeps increasing, particularly those generated by Data Independent Acquisition (DIA) approaches such as SWATH-MS. Unlike Data Dependent Acquisition datasets, the re-use of DIA datasets has been rather limited to date, despite its high potential, due to the technical challenges involved. We introduce a (re-)analysis pipeline for public SWATH-MS datasets which includes a combination of metadata annotation protocols, automated workflows for MS data analysis, statistical analysis, and the integration of the results into the Expression Atlas resource. Automation is orchestrated with Nextflow, using containerised open analysis software tools, rendering the pipeline readily available and reproducible. To demonstrate its utility, we reanalysed 10 public DIA datasets from the PRIDE database, comprising 1,278 SWATH-MS runs. The robustness of the analysis was evaluated, and the results compared to those obtained in the original publications. The final expression values were integrated into Expression Atlas, making SWATH-MS experiments more widely available and combining them with expression data originating from other proteomics and transcriptomics datasets.


Subject(s)
Proteomics , Software , Data Analysis , Databases, Protein , Datasets as Topic , Mass Spectrometry/methods , Proteomics/methods
5.
Nucleic Acids Res ; 50(D1): D543-D552, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34723319

ABSTRACT

The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the world's largest data repository of mass spectrometry-based proteomics data. PRIDE is one of the founding members of the global ProteomeXchange (PX) consortium and an ELIXIR core data resource. In this manuscript, we summarize the developments in PRIDE resources and related tools since the previous update manuscript was published in Nucleic Acids Research in 2019. The number of submitted datasets to PRIDE Archive (the archival component of PRIDE) has reached on average around 500 datasets per month during 2021. In addition to continuous improvements in PRIDE Archive data pipelines and infrastructure, the PRIDE Spectra Archive has been developed to provide direct access to the submitted mass spectra using Universal Spectrum Identifiers. As a key point, the file format MAGE-TAB for proteomics has been developed to enable the improvement of sample metadata annotation. Additionally, the resource PRIDE Peptidome provides access to aggregated peptide/protein evidences across PRIDE Archive. Furthermore, we will describe how PRIDE has increased its efforts to reuse and disseminate high-quality proteomics data into other added-value resources such as UniProt, Ensembl and Expression Atlas.


Subject(s)
Databases, Protein , Metadata/statistics & numerical data , Molecular Sequence Annotation/statistics & numerical data , Peptides/chemistry , Proteins/chemistry , Software , Amino Acid Sequence , Bibliometrics , Datasets as Topic , Humans , Information Storage and Retrieval , Internet , Mass Spectrometry , Peptides/genetics , Peptides/metabolism , Proteins/genetics , Proteins/metabolism , Proteomics/instrumentation , Proteomics/methods , Sequence Alignment
6.
Nucleic Acids Res ; 50(D1): D129-D140, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34850121

ABSTRACT

The EMBL-EBI Expression Atlas is an added value knowledge base that enables researchers to answer the question of where (tissue, organism part, developmental stage, cell type) and under which conditions (disease, treatment, gender, etc) a gene or protein of interest is expressed. Expression Atlas brings together data from >4500 expression studies from >65 different species, across different conditions and tissues. It makes these data freely available in an easy to visualise form, after expert curation to accurately represent the intended experimental design, re-analysed via standardised pipelines that rely on open-source community developed tools. Each study's metadata are annotated using ontologies. The data are re-analyzed with the aim of reproducing the original conclusions of the underlying experiments. Expression Atlas is currently divided into Bulk Expression Atlas and Single Cell Expression Atlas. Expression Atlas contains data from differential studies (microarray and bulk RNA-Seq) and baseline studies (bulk RNA-Seq and proteomics), whereas Single Cell Expression Atlas is currently dedicated to Single Cell RNA-Sequencing (scRNA-Seq) studies. The resource has been in continuous development since 2009 and it is available at https://www.ebi.ac.uk/gxa.


Subject(s)
Databases, Genetic , Proteins/genetics , Proteomics , Software , Computational Biology , Gene Expression Profiling , Humans , Proteins/chemistry , RNA-Seq , Sequence Analysis, RNA , Single-Cell Analysis
7.
Mol Cell Proteomics ; 19(12): 2157-2168, 2020 12.
Article in English | MEDLINE | ID: mdl-33067342

ABSTRACT

Cross-linking MS (XL-MS) has been recognized as an effective source of information about protein structures and interactions. In contrast to regular peptide identification, XL-MS has to deal with a quadratic search space, where peptides from every protein could potentially be cross-linked to any other protein. To cope with this search space, most tools apply different heuristics for search space reduction. We introduce a new open-source XL-MS database search algorithm, OpenPepXL, which offers increased sensitivity compared with other tools. OpenPepXL searches the full search space of an XL-MS experiment without using heuristics to reduce it. Because of efficient data structures and built-in parallelization OpenPepXL achieves excellent runtimes and can also be deployed on large compute clusters and cloud services while maintaining a slim memory footprint. We compared OpenPepXL to several other commonly used tools for identification of noncleavable labeled and label-free cross-linkers on a diverse set of XL-MS experiments. In our first comparison, we used a data set from a fraction of a cell lysate with a protein database of 128 targets and 128 decoys. At 5% FDR, OpenPepXL finds from 7% to over 50% more unique residue pairs (URPs) than other tools. On data sets with available high-resolution structures for cross-link validation OpenPepXL reports from 7% to over 40% more structurally validated URPs than other tools. Additionally, we used a synthetic peptide data set that allows objective validation of cross-links without relying on structural information and found that OpenPepXL reports at least 12% more validated URPs than other tools. It has been built as part of the OpenMS suite of tools and supports Windows, macOS, and Linux operating systems. OpenPepXL also supports the MzIdentML 1.2 format for XL-MS identification results. It is freely available under a three-clause BSD license at https://openms.org/openpepxl.


Subject(s)
Cross-Linking Reagents/chemistry , Peptides/analysis , Software , Algorithms , Amino Acid Sequence , Databases, Protein , HEK293 Cells , Humans , Mass Spectrometry , Models, Molecular , Peptides/chemistry , Ribosomes/metabolism
8.
Methods Mol Biol ; 2051: 345-371, 2020.
Article in English | MEDLINE | ID: mdl-31552637

ABSTRACT

In any analytical discipline, data analysis reproducibility is closely interlinked with data quality. In this book chapter focused on mass spectrometry-based proteomics approaches, we introduce how both data analysis reproducibility and data quality can influence each other and how data quality and data analysis designs can be used to increase robustness and improve reproducibility. We first introduce methods and concepts to design and maintain robust data analysis pipelines such that reproducibility can be increased in parallel. The technical aspects related to data analysis reproducibility are challenging, and current ways to increase the overall robustness are multifaceted. Software containerization and cloud infrastructures play an important part.We will also show how quality control (QC) and quality assessment (QA) approaches can be used to spot analytical issues, reduce the experimental variability, and increase confidence in the analytical results of (clinical) proteomics studies, since experimental variability plays a substantial role in analysis reproducibility. Therefore, we give an overview on existing solutions for QC/QA, including different quality metrics, and methods for longitudinal monitoring. The efficient use of both types of approaches undoubtedly provides a way to improve the experimental reliability, reproducibility, and level of consistency in proteomics analytical measurements.


Subject(s)
Cloud Computing , Data Analysis , Proteomics/methods , Quality Control , Data Accuracy , Humans , Mass Spectrometry , Reproducibility of Results , Software
9.
J Proteome Res ; 19(1): 537-542, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31755270

ABSTRACT

The field of computational proteomics is approaching the big data age, driven both by a continuous growth in the number of samples analyzed per experiment as well as by the growing amount of data obtained in each analytical run. In order to process these large amounts of data, it is increasingly necessary to use elastic compute resources such as Linux-based cluster environments and cloud infrastructures. Unfortunately, the vast majority of cross-platform proteomics tools are not able to operate directly on the proprietary formats generated by the diverse mass spectrometers. Here, we present ThermoRawFileParser, an open-source, cross-platform tool that converts Thermo RAW files into open file formats such as MGF and the HUPO-PSI standard file format mzML. To ensure the broadest possible availability and to increase integration capabilities with popular workflow systems such as Galaxy or Nextflow, we have also built Conda package and BioContainers container around ThermoRawFileParser. In addition, we implemented a user-friendly interface (ThermoRawFileParserGUI) for those users not familiar with command-line tools. Finally, we performed a benchmark of ThermoRawFileParser and msconvert to verify that the converted mzML files contain reliable quantitative results.


Subject(s)
Computational Biology/methods , Proteomics/methods , Software , Databases, Protein , Saccharomyces cerevisiae Proteins/metabolism , Workflow
10.
Genome Med ; 11(1): 28, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31039795

ABSTRACT

BACKGROUND: Although mutated HLA ligands are considered ideal cancer-specific immunotherapy targets, evidence for their presentation is lacking in hepatocellular carcinomas (HCCs). Employing a unique multi-omics approach comprising a neoepitope identification pipeline, we assessed exome-derived mutations naturally presented as HLA class I ligands in HCCs. METHODS: In-depth multi-omics analyses included whole exome and transcriptome sequencing to define individual patient-specific search spaces of neoepitope candidates. Evidence for the natural presentation of mutated HLA ligands was investigated through an in silico pipeline integrating proteome and HLA ligandome profiling data. RESULTS: The approach was successfully validated in a state-of-the-art dataset from malignant melanoma, and despite multi-omics evidence for somatic mutations, mutated naturally presented HLA ligands remained elusive in HCCs. An analysis of extensive cancer datasets confirmed fundamental differences of tumor mutational burden in HCC and malignant melanoma, challenging the notion that exome-derived mutations contribute relevantly to the expectable neoepitope pool in malignancies with only few mutations. CONCLUSIONS: This study suggests that exome-derived mutated HLA ligands appear to be rarely presented in HCCs, inter alia resulting from a low mutational burden as compared to other malignancies such as malignant melanoma. Our results therefore demand widening the target scope for personalized immunotherapy beyond this limited range of mutated neoepitopes, particularly for malignancies with similar or lower mutational burden.


Subject(s)
Antigens, Neoplasm/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Transcriptome , Aged , Aged, 80 and over , Antigens, Neoplasm/metabolism , Carcinoma, Hepatocellular/immunology , Exome , Female , Genomics/methods , Humans , Liver Neoplasms/immunology , Male , Middle Aged , Mutation Rate
11.
Nucleic Acids Res ; 47(D1): D442-D450, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30395289

ABSTRACT

The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the world's largest data repository of mass spectrometry-based proteomics data, and is one of the founding members of the global ProteomeXchange (PX) consortium. In this manuscript, we summarize the developments in PRIDE resources and related tools since the previous update manuscript was published in Nucleic Acids Research in 2016. In the last 3 years, public data sharing through PRIDE (as part of PX) has definitely become the norm in the field. In parallel, data re-use of public proteomics data has increased enormously, with multiple applications. We first describe the new architecture of PRIDE Archive, the archival component of PRIDE. PRIDE Archive and the related data submission framework have been further developed to support the increase in submitted data volumes and additional data types. A new scalable and fault tolerant storage backend, Application Programming Interface and web interface have been implemented, as a part of an ongoing process. Additionally, we emphasize the improved support for quantitative proteomics data through the mzTab format. At last, we outline key statistics on the current data contents and volume of downloads, and how PRIDE data are starting to be disseminated to added-value resources including Ensembl, UniProt and Expression Atlas.


Subject(s)
Databases, Protein , Mass Spectrometry , Proteomics , Peptides/chemistry , Software
12.
J Proteome Res ; 17(12): 4051-4060, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30270626

ABSTRACT

The 2017 Dagstuhl Seminar on Computational Proteomics provided an opportunity for a broad discussion on the current state and future directions of the generation and use of peptide tandem mass spectrometry spectral libraries. Their use in proteomics is growing slowly, but there are multiple challenges in the field that must be addressed to further increase the adoption of spectral libraries and related techniques. The primary bottlenecks are the paucity of high quality and comprehensive libraries and the general difficulty of adopting spectral library searching into existing workflows. There are several existing spectral library formats, but none captures a satisfactory level of metadata; therefore, a logical next improvement is to design a more advanced, Proteomics Standards Initiative-approved spectral library format that can encode all of the desired metadata. The group discussed a series of metadata requirements organized into three designations of completeness or quality, tentatively dubbed bronze, silver, and gold. The metadata can be organized at four different levels of granularity: at the collection (library) level, at the individual entry (peptide ion) level, at the peak (fragment ion) level, and at the peak annotation level. Strategies for encoding mass modifications in a consistent manner and the requirement for encoding high-quality and commonly seen but as-yet-unidentified spectra were discussed. The group also discussed related topics, including strategies for comparing two spectra, techniques for generating representative spectra for a library, approaches for selection of optimal signature ions for targeted workflows, and issues surrounding the merging of two or more libraries into one. We present here a review of this field and the challenges that the community must address in order to accelerate the adoption of spectral libraries in routine analysis of proteomics datasets.


Subject(s)
Databases, Protein/standards , Peptide Library , Proteomics/methods , Animals , Humans , Tandem Mass Spectrometry/methods , Workflow
13.
J Proteome Res ; 16(12): 4288-4298, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28849660

ABSTRACT

The Proteomics Standards Initiative (PSI) of the Human Proteome Organization (HUPO) has now been developing and promoting open community standards and software tools in the field of proteomics for 15 years. Under the guidance of the chair, cochairs, and other leadership positions, the PSI working groups are tasked with the development and maintenance of community standards via special workshops and ongoing work. Among the existing ratified standards, the PSI working groups continue to update PSI-MI XML, MITAB, mzML, mzIdentML, mzQuantML, mzTab, and the MIAPE (Minimum Information About a Proteomics Experiment) guidelines with the advance of new technologies and techniques. Furthermore, new standards are currently either in the final stages of completion (proBed and proBAM for proteogenomics results as well as PEFF) or in early stages of design (a spectral library standard format, a universal spectrum identifier, the qcML quality control format, and the Protein Expression Interface (PROXI) web services Application Programming Interface). In this work we review the current status of all of these aspects of the PSI, describe synergies with other efforts such as the ProteomeXchange Consortium, the Human Proteome Project, and the metabolomics community, and provide a look at future directions of the PSI.


Subject(s)
Proteomics/standards , Software , Databases, Protein/standards , Databases, Protein/trends , Guidelines as Topic , Humans , Metabolomics , Proteomics/trends , Reference Standards , Software/standards , Software/trends
14.
F1000Res ; 62017.
Article in English | MEDLINE | ID: mdl-28713550

ABSTRACT

Computational approaches have been major drivers behind the progress of proteomics in recent years. The aim of this white paper is to provide a framework for integrating computational proteomics into ELIXIR in the near future, and thus to broaden the portfolio of omics technologies supported by this European distributed infrastructure. This white paper is the direct result of a strategy meeting on 'The Future of Proteomics in ELIXIR' that took place in March 2017 in Tübingen (Germany), and involved representatives of eleven ELIXIR nodes. These discussions led to a list of priority areas in computational proteomics that would complement existing activities and close gaps in the portfolio of tools and services offered by ELIXIR so far. We provide some suggestions on how these activities could be integrated into ELIXIR's existing platforms, and how it could lead to a new ELIXIR use case in proteomics. We also highlight connections to the related field of metabolomics, where similar activities are ongoing. This white paper could thus serve as a starting point for the integration of computational proteomics into ELIXIR. Over the next few months we will be working closely with all stakeholders involved, and in particular with other representatives of the proteomics community, to further refine this paper.

15.
J Biotechnol ; 261: 142-148, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-28559010

ABSTRACT

BACKGROUND: In recent years, several mass spectrometry-based omics technologies emerged to investigate qualitative and quantitative changes within thousands of biologically active components such as proteins, lipids and metabolites. The research enabled through these methods potentially contributes to the diagnosis and pathophysiology of human diseases as well as to the clarification of structures and interactions between biomolecules. Simultaneously, technological advances in the field of mass spectrometry leading to an ever increasing amount of data, demand high standards in efficiency, accuracy and reproducibility of potential analysis software. RESULTS: This article presents the current state and ongoing developments in OpenMS, a versatile open-source framework aimed at enabling reproducible analyses of high-throughput mass spectrometry data. It provides implementations of frequently occurring processing operations on MS data through a clean application programming interface in C++ and Python. A collection of 185 tools and ready-made workflows for typical MS-based experiments enable convenient analyses for non-developers and facilitate reproducible research without losing flexibility. CONCLUSIONS: OpenMS will continue to increase its ease of use for developers as well as users with improved continuous integration/deployment strategies, regular trainings with updated training materials and multiple sources of support. The active developer community ensures the incorporation of new features to support state of the art research.


Subject(s)
Computational Biology , Mass Spectrometry , Software , Databases, Genetic , Humans
16.
Mol Cell Proteomics ; 16(7): 1275-1285, 2017 07.
Article in English | MEDLINE | ID: mdl-28515314

ABSTRACT

The first stable version of the Proteomics Standards Initiative mzIdentML open data standard (version 1.1) was published in 2012-capturing the outputs of peptide and protein identification software. In the intervening years, the standard has become well-supported in both commercial and open software, as well as a submission and download format for public repositories. Here we report a new release of mzIdentML (version 1.2) that is required to keep pace with emerging practice in proteome informatics. New features have been added to support: (1) scores associated with localization of modifications on peptides; (2) statistics performed at the level of peptides; (3) identification of cross-linked peptides; and (4) support for proteogenomics approaches. In addition, there is now improved support for the encoding of de novo sequencing of peptides, spectral library searches, and protein inference. As a key point, the underlying XML schema has only undergone very minor modifications to simplify as much as possible the transition from version 1.1 to version 1.2 for implementers, but there have been several notable updates to the format specification, implementation guidelines, controlled vocabularies and validation software. mzIdentML 1.2 can be described as backwards compatible, in that reading software designed for mzIdentML 1.1 should function in most cases without adaptation. We anticipate that these developments will provide a continued stable base for software teams working to implement the standard. All the related documentation is accessible at http://www.psidev.info/mzidentml.


Subject(s)
Computational Biology/standards , Proteomics/standards , Databases, Protein , Software
17.
BMC Bioinformatics ; 18(1): 242, 2017 May 08.
Article in English | MEDLINE | ID: mdl-28482806

ABSTRACT

BACKGROUND: Immunoinformatics has become a crucial part in biomedical research. Yet many immunoinformatics tools have command line interfaces only and can be difficult to install. Web-based immunoinformatics tools, on the other hand, are difficult to integrate with other tools, which is typically required for the complex analysis and prediction pipelines required for advanced applications. RESULT: We present ImmunoNodes, an immunoinformatics toolbox that is fully integrated into the visual workflow environment KNIME. By dragging and dropping tools and connecting them to indicate the data flow through the pipeline, it is possible to construct very complex workflows without the need for coding. CONCLUSION: ImmunoNodes allows users to build complex workflows with an easy to use and intuitive interface with a few clicks on any desktop computer.


Subject(s)
Allergy and Immunology , Computational Biology/methods , Computer Graphics , Software , Workflow , Amino Acid Sequence , Epitopes/chemistry , HLA Antigens/immunology , Humans , Ligands , Viral Vaccines/immunology , Zika Virus/immunology
18.
Anal Chem ; 89(8): 4474-4479, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28318237

ABSTRACT

To have confidence in results acquired during biological mass spectrometry experiments, a systematic approach to quality control is of vital importance. Nonetheless, until now, only scattered initiatives have been undertaken to this end, and these individual efforts have often not been complementary. To address this issue, the Human Proteome Organization-Proteomics Standards Initiative has established a new working group on quality control at its meeting in the spring of 2016. The goal of this working group is to provide a unifying framework for quality control data. The initial focus will be on providing a community-driven standardized file format for quality control. For this purpose, the previously proposed qcML format will be adapted to support a variety of use cases for both proteomics and metabolomics applications, and it will be established as an official PSI format. An important consideration is to avoid enforcing restrictive requirements on quality control but instead provide the basic technical necessities required to support extensive quality control for any type of mass spectrometry-based workflow. We want to emphasize that this is an open community effort, and we seek participation from all scientists with an interest in this field.


Subject(s)
Proteome/analysis , Proteomics , Databases, Protein , Humans , Mass Spectrometry/standards , Proteome/standards , Proteomics/standards , Quality Control
20.
Nat Methods ; 13(9): 741-8, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27575624

ABSTRACT

High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and reproducible analysis difficult. We present OpenMS 2.0 (http://www.openms.de), a robust, open-source, cross-platform software specifically designed for the flexible and reproducible analysis of high-throughput MS data. The extensible OpenMS software implements common mass spectrometric data processing tasks through a well-defined application programming interface in C++ and Python and through standardized open data formats. OpenMS additionally provides a set of 185 tools and ready-made workflows for common mass spectrometric data processing tasks, which enable users to perform complex quantitative mass spectrometric analyses with ease.


Subject(s)
Computational Biology/methods , Electronic Data Processing , Mass Spectrometry/methods , Proteomics/methods , Software , Aging/blood , Blood Proteins/chemistry , Humans , Molecular Sequence Annotation , Proteogenomics/methods , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...