Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 280: 116547, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38843744

ABSTRACT

Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment. Herein, this study aimed to investigate the effect of CAP on DON-induced hepatotoxicity both in vitro and in vivo and its underlying mechanisms. The results showed that 120-s CAP treatment achieved 97 % degradation of DON. The vitro hepatotoxicity of DON in L02 cells was significantly reduced with CAP treatment time. Meanwhile, CAP markedly alleviated DON-induced liver injury in mice including the balloon-like degeneration of liver tissues and elevation of AST and ALP level. The underlying mechanism for CAP detoxification of DON-induced hepatotoxicity was further elucidated. The results showed that DON caused severe oxidative stress in cells by suppressing the antioxidant signaling pathway of Nrf2/HO-1/NQO-1, consequently leading to mitochondrial dysfunction and cell apoptosis, accompanied by cellular senescence and inflammation. CAP blocked DON inhibition on the Nrf2/HO-1/NQO-1 signaling pathway through the efficient degradation of DON, accordingly alleviating the oxidative stress and liver injury induced by DON. Therefore, CAP is an effective method to eliminate DON hepatotoxicity, which can be applied in the detoxification of mycotoxin-contaminated food and feed to ensure human and animal health.

2.
Clin Transl Med ; 14(4): e1644, 2024 04.
Article in English | MEDLINE | ID: mdl-38572667

ABSTRACT

RNA methylation is widespread in nature. Abnormal expression of proteins associated with RNA methylation is strongly associated with a number of human diseases including cancer. Increasing evidence suggests that targeting RNA methylation holds promise for cancer treatment. This review specifically describes several common RNA modifications, such as the relatively well-studied N6-methyladenosine, as well as 5-methylcytosine and pseudouridine (Ψ). The regulatory factors involved in these modifications and their roles in RNA are also comprehensively discussed. We summarise the diverse regulatory functions of these modifications across different types of RNAs. Furthermore, we elucidate the structural characteristics of these modifications along with the development of specific inhibitors targeting them. Additionally, recent advancements in small molecule inhibitors targeting RNA modifications are presented to underscore their immense potential and clinical significance in enhancing therapeutic efficacy against cancer. KEY POINTS: In this paper, several important types of RNA modifications and their related regulatory factors are systematically summarised. Several regulatory factors related to RNA modification types were associated with cancer progression, and their relationships with cancer cell migration, invasion, drug resistance and immune environment were summarised. In this paper, the inhibitors targeting different regulators that have been proposed in recent studies are summarised in detail, which is of great significance for the development of RNA modification regulators and cancer treatment in the future.


Subject(s)
Neoplasms , RNA Methylation , Humans , 5-Methylcytosine , Adenosine , Cell Movement , RNA/genetics , Neoplasms/drug therapy , Neoplasms/genetics
3.
J Biol Chem ; 300(4): 106793, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403250

ABSTRACT

RNA 5-methylcytosine (m5C) is an abundant chemical modification in mammalian RNAs and plays crucial roles in regulating vital physiological and pathological processes, especially in cancer. However, the dysregulation of m5C and its underlying mechanisms in non-small cell lung cancer (NSCLC) remain unclear. Here we identified that NSUN2, a key RNA m5C methyltransferase, is highly expressed in NSCLC tumor tissue. We found elevated NSUN2 expression levels strongly correlate with tumor grade and size, predicting poor outcomes for NSCLC patients. Furthermore, RNA-seq and subsequent confirmation studies revealed the antioxidant-promoting transcription factor NRF2 is a target of NSUN2, and depleting NSUN2 decreases the expression of NRF2 and increases the sensitivity of NSCLC cells to ferroptosis activators both in vitro and in vivo. Intriguingly, the methylated-RIP-qPCR assay results indicated that NRF2 mRNA has a higher m5C level when NSUN2 is overexpressed in NSCLC cells but shows no significant changes in the NSUN2 methyltransferase-deficient group. Mechanistically, we confirmed that NSUN2 upregulates the expression of NRF2 by enhancing the stability of NRF2 mRNA through the m5C modification within its 5'UTR region recognized by the specific m5C reader protein YBX1, rather than influencing its translation. In subsequent rescue experiments, we show knocking down NRF2 diminished the proliferation, migration, and ferroptosis tolerance mediated by NSUN2 overexpression. In conclusion, our study unveils a novel regulatory mechanism in which NSUN2 sustains NRF2 expression through an m5C-YBX1-axis, suggesting that targeting NSUN2 and its regulated ferroptosis pathway might offer promising therapeutic strategies for NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , NF-E2-Related Factor 2 , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Mice, Nude , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Male , Female , Middle Aged
4.
Biochem Genet ; 62(2): 741-760, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37423972

ABSTRACT

Endometrial cancer (EC) is a common group of malignant epithelial tumors that mainly occur in the female endometrium. Lactate is a key regulator of signal pathways in normal and malignant tissues. However, there is still no research on lactate metabolism-related lncRNA in EC. Here, we intended to establish a prognostic risk model for EC based on lactate metabolism-related lncRNA to forecast the prognosis of EC patients. First, we found that 38 lactate metabolism-associated lncRNAs were significantly overall survival through univariate Cox regression analysis. Using minimum absolute contraction and selection operator (LASSO) regression analysis and multivariate Cox regression analysis, six lactate metabolism-related lncRNAs were established as independent predictor in EC patients and were used to establish a prognostic risk signature. We next used multifactorial COX regression analysis and receiver operating characteristic (ROC) curve analysis to confirm that risk score was an independent prognostic factor of overall patient survival. The survival time of patients with EC in different high-risk populations was obviously related to clinicopathological factors. In addition, lactate metabolism-related lncRNA in high-risk population participated in multiple aspects of EC malignant progress through Gene Set Enrichment Analysis, Genomes pathway and Kyoto Encyclopedia of Genes and Gene Ontology. And risk scores were strongly associated with tumor mutation burden, immunotherapy response and microsatellite instability. Finally, we chose a lncRNA SRP14-AS1 to validate the model we have constructed. Interestingly, we observed that the expression degree of SRP14-AS1 was lower in tumor tissues of EC patients than in normal tissues, which was consistent with our findings in the TCGA database. In conclusion, our study constructed a prognostic risk model through lactate metabolism-related lncRNA and validated the model, confirming that the model can be used to predict the prognosis of EC patients and providing a molecular analysis of potential prognostic lncRNA for EC.

5.
Cell Death Discov ; 9(1): 431, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040698

ABSTRACT

The long non-coding RNA (lncRNA) TMEM44-AS1 is a novel lncRNA whose pro-carcinogenic role in gastric cancer and glioma has been demonstrated. However, its function in esophageal squamous cell carcinoma (ESCC) is unknown. In this study, we identified that TMEM44-AS1 was highly expressed in ESCC tissues and cells. Functionally, TMEM44-AS1 promoted ESCC cell proliferation, invasion and metastasis in vitro and in vivo. TMEM44-AS1 inhibited ferroptosis in ESCC cells, and ferroptosis levels were significantly increased after knockdown of TMEM44-AS1. Mechanistically, TMEM44-AS1 was positively correlated with GPX4 expression, and TMEM44-AS1 could bind to the RNA-binding protein IGF2BP2 to enhance the stability of GPX4 mRNA, thereby affecting ferroptosis and regulating the malignant progression of ESCC. In summary, this study reveals the TMEM44-AS1-IGF2BP2-GPX4 axis could influence cancer progression in ESCC. TMEM44-AS1 can be used as a potential treatment target against ESCC.

6.
Int J Biol Macromol ; 253(Pt 2): 126773, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37690652

ABSTRACT

RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.


Subject(s)
Epigenesis, Genetic , RNA , Humans , Methylation , RNA/genetics , Protein Processing, Post-Translational , Cell Differentiation
7.
Int J Gen Med ; 16: 2943-2960, 2023.
Article in English | MEDLINE | ID: mdl-37457750

ABSTRACT

Purpose: Cervical cancer (CC) has the fourth highest incidence and mortality rate among female cancers. Lactate is a key regulator promoting tumor progression. Long non-coding RNAs (lncRNAs) are closely associated with cervical cancer (CC). The study was aimed to develop a prognostic risk model for cervical cancer based on lactate metabolism-associated lncRNAs and to determine their clinical prognostic value. Patients and Methods: In this study, CESC transcriptome data were obtained from the TCGA database. 262 lactate metabolism-associated genes were extracted from MsigDB (Molecular Characterization Database). Then, correlation analysis was used to identify LRLs. Univariate Cox regression analysis was performed afterwards, followed by least absolute shrinkage and selection operator (LASSO) regression analysis and multiple Cox regression analysis. 10 lncRNAs were finally identified to construct a risk score model. They were divided into two groups of high risk and low risk according to the median of risk scores. The predictive performance of the models was assessed by Kaplan-Meier (K-M) analysis, subject work characteristics (ROC) analysis, and univariate and multivariate Cox analyses. To assess the clinical utility of the prognostic model, we performed functional enrichment analysis, immune microenvironment analysis, mutation analysis, and column line graph generation. Results: We constructed a prognostic model consisting of 10 LRLs at CC. We observed that high-risk populations were strongly associated with poor survival outcomes. Risk score was an independent risk factor for CC prognosis and was strongly associated with immune microenvironment analysis and tumor mutational load. Conclusion: We developed a risk model of lncRNAs associated with lactate metabolism and used it to predict prognosis of CC, which could guide and facilitate the progress of new treatment strategies and disease monitoring in CC patients.

8.
Front Cell Dev Biol ; 11: 1160381, 2023.
Article in English | MEDLINE | ID: mdl-37152286

ABSTRACT

Ferroptosis is an emerging form of non-apoptotic regulated cell death which is different from cell death mechanisms such as autophagy, apoptosis and necrosis. It is characterized by iron-dependent lipid peroxide accumulation. Circular RNA (circRNA) is a newly studied evolutionarily conserved type of non-coding RNA with a covalent closed-loop structure. It exhibits universality, conservatism, stability and particularity. At present, the functions that have been studied and found include microRNA sponge, protein scaffold, transcription regulation, translation and production of peptides, etc. CircRNA can be used as a biomarker of tumors and is a hotspot in RNA biology research. Studies have shown that ferroptosis can participate in tumor regulation through the circRNA molecular pathway and then affect cancer progression, which may become a direction of cancer diagnosis and treatment in the future. This paper reviews the molecular biological mechanism of ferroptosis and the role of circular RNA in tumors and summarizes the circRNA related to ferroptosis in tumors, which may inspire research prospects for the precise prevention and treatment of cancer in the future.

9.
Oncogene ; 42(26): 2103-2112, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37188737

ABSTRACT

Resistance to temozolomide (TMZ) remains an important cause of treatment failure in patients with glioblastoma multiforme (GBM). TRIM25, as a tripartite motif-containing (TRIM) family member, plays a significant role in cancer progression and chemoresistance. However, the function of TRIM25 and its precise mechanism in regulating GBM progression and TMZ resistance remain poorly understood. We found that the expression of TRIM25 was upregulated in GBM, and it was associated with tumor grade and TMZ resistance. Elevated TRIM25 expression predicted a poor prognosis in GBM patients and enhanced tumor growth in vitro and in vivo. Further analysis revealed that elevated TRIM25 expression inhibited oxidative stress and ferroptotic cell death in glioma cells under TMZ treatment. Mechanistically, TRIM25 regulates TMZ resistance by promoting the nuclear import of nuclear factor erythroid 2-related factor 2(Nrf2) via keap1 ubiquitination. Knockdown of Nrf2 abolished the ability of TRIM25 to promote glioma cell survival and TMZ resistance. Our results support the targeting of TRIM25 as a new therapeutic strategy for glioma.


Subject(s)
Glioblastoma , Glioma , Humans , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Cell Death , Cell Line, Tumor , Glioblastoma/pathology , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Temozolomide/pharmacology , Temozolomide/therapeutic use , Transcription Factors/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
10.
Cell Death Dis ; 14(3): 230, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002211

ABSTRACT

Non-small cell lung cancer (NSCLC) is one of the most threatening malignancies to human health and life. In most cases, patients with NSCLC are already at an advanced stage when they are diagnosed. In recent years, lung cancer has made great progress in precision therapy, but the efficacy of immunotherapy is unstable, and its response rate varies from patient to patient. Several biomarkers have been proposed to predict the outcomes of immunotherapy, such as programmed cell death-ligand 1 (PD-L1) expression and tumor mutational burden (TMB). Nevertheless, the detection assays are invasive and demanding on tumor tissue. To effectively predict the outcomes of immunotherapy, novel biomarkers are needed to improve the performance of conventional biomarkers. Liquid biopsy is to capture and detect circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) and exosomes in body fluids, such as blood, saliva, urine, pleural fluid and cerebrospinal fluid as samples from patients, so as to make analysis and diagnosis of cancer and other diseases. The application of liquid biopsy provides a new possible solution, as it has several advantages such as non-invasive, real-time dynamic monitoring, and overcoming tumor heterogeneity. Liquid biopsy has shown predictive value in immunotherapy, significantly improving the precision treatment of lung cancer patients. Herein, we review the application of liquid biopsy in predicting the outcomes of immunotherapy in NSCLC patients, and discuss the challenges and future directions in this field.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Liquid Biopsy , Immunotherapy , Biomarkers, Tumor/metabolism , B7-H1 Antigen/metabolism
11.
J Clin Lab Anal ; 37(1): e24801, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36510377

ABSTRACT

BACKGROUND: Long non-coding RNA HOXC cluster antisense RNA 1 (HOXC-AS1) is a novel lncRNA whose cancer-promoting effect in gastric cancer and nasopharyngeal carcinoma has already been demonstrated. However, its functions in esophageal squamous cell carcinoma (ESCC) remains unknown. LncRNAs can interact with RNA-binding proteins (RBPs) and affect gene expression levels through post-transcriptional regulation. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is a widely studied RBP, and sirtuin 1 also known as SIRT1 has been reported to be involved in cancer progression. METHODS: Establishment of in vivo models, HE and immunohistochemistry staining verified the oncogenic effect of HOXC-AS1. The interaction relationship between HOXC-AS1, IGF2BP2 and SIRT1 was verified by RNA pulldown and RNA immunoprecipitation (RIP) assay. Relative expression and stability changes of genes were detected by qPCR and actinomycin D experiments. Finally, the effect of HOXC-AS1-IGF2BP2-SIRT1 axis on ESCC was verified by rescue experiments. RESULTS: HOXC-AS1 is highly expressed in ESCC cells and plays oncogenic effects in vivo. qPCR showed the positive relationship between HOXC-AS1 and SIRT1 following HOXC-AS1 knockdown or overexpression. RNA-pulldown, mass spectrometry and RIP assay demonstrated that IGF2BP2 is an RBP downstream of HOXC-AS1. Then, RIP and qPCR showed that IGF2BP2 could bind to SIRT1 mRNA and knockdown IGF2BP2 resulted in decreased SIRT1 mRNA level. Finally, a series of rescue assay showed that the HOXC-AS1-IGF2BP2-SIRT1 axis can affect the function of ESCC. CONCLUSION: LncRNA HOXC-AS1 acts as an oncogenic role in ESCC, which impacts ESCC progression by interaction with IGF2BP2 to stabilize SIRT1 expression.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , RNA, Long Noncoding , Humans , Esophageal Squamous Cell Carcinoma/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sirtuin 1/genetics , Esophageal Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Messenger , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Proliferation/genetics
12.
Mol Carcinog ; 62(2): 122-134, 2023 02.
Article in English | MEDLINE | ID: mdl-36193884

ABSTRACT

New diagnostic and therapeutic strategies are urgently needed to improve the prognosis of patients with esophageal squamous cell carcinoma (ESCC), which has high morbidity and mortality. Bioinformatics analysis revealed that cell cycle regulation related molecular G2 and S phase-expressed-1 (GTSE1) was dysregulated in ESCC. In this study, the ectopic expression of GTSE1 was verified in ESCC patients' tissues and cell lines. After overexpression or knockdown of GTSE1 using lentiviral transfection, the effects of GTSE1 on the proliferation, migration, invasion, and apoptosis of ESCC cells were detected. The contribution of GTSE1 in inducing chromosomal missegregation in cells leading to chromosome instability (CIN) has been described. Long-term existence of CIN can increase reactive oxygen species (ROS) generation in ESCC cells, followed by inhibition of apoptosis by activating the c-Jun N-terminal kinase (JNK) signaling pathway, and this inhibition could be relieved after treatment with JNK inhibitor. In vivo experiments, we also confirmed the tumor-promoting effect and mechanism of GTSE1 in ESCC using nude mice model. In this study, we demonstrated that GTSE1 induces CIN in ESCC cells, and increases intracellular ROS production, which leads to cellular oxidative stress, contributes to the activation of the JNK signaling pathway, and thereby inhibits apoptosis leading to ESCC tumorigenesis.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Mice , Apoptosis , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Chromosomal Instability , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/metabolism , MAP Kinase Signaling System , Mice, Nude , Reactive Oxygen Species/metabolism , S Phase , Humans
13.
J Exp Clin Cancer Res ; 41(1): 347, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36522683

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common digestive malignancies with relatively high morbidity and mortality. Emerging evidence suggests circular RNAs (circRNAs) play critical roles in tumor cell malignancy. However, the biological function and clinical significance of many circRNAs in ESCC remain elusive. METHODS: The expression level and clinical implication of circRUNX1 in ESCC tissues were evaluated using qRT-PCR. In vitro and in vivo functional studies were conducted to investigate the underlying biological effects of circRUNX1 on ESCC cell growth and metastasis. Moreover, bioinformatics analysis, RNA sequencing (RNA-seq), RNA immunoprecipitation (RIP) assays, dual-luciferase reporter assays, and rescue experiments were performed to explore the relationships between circRUNX1, miR-449b-5p, Forkhead box protein P3 (FOXP3), and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). RESULTS: CircRUNX1 was found to be significantly up-regulated in ESCC tissues and associated with TNM stage and differentiation grade. Functionally, circRUNX1 promoted ESCC cell proliferation and metastasis in vitro and in vivo. CircRUNX1 enhanced FOXP3 expression by competitively sponging miR-449b-5p. Notably, both miR-449b-5p mimics and FOXP3 knockdown restored the effects of circRUNX1 overexpression on cell proliferation and metastasis. Furthermore, IGF2BP2 binding to circRUNX1 prevented its degradation. CONCLUSIONS: IGF2BP2 mediated circRUNX1 functions as an oncogenic factor to facilitate ESCC progression through the miR-449b-5p/FOXP3 axis, implying that circRUNX1 has the potential to be a promising diagnostic marker and therapeutic target for ESCC patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , RNA, Circular/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Cell Proliferation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
14.
Exp Cell Res ; 415(1): 113117, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35351402

ABSTRACT

Mounting evidence suggests that long non-coding RNAs play a critical role in the occurrence and development of human malignancies. Nonetheless, it remains unknown whether Gamma-Butyrobetaine Hydroxylase 1-Antisense RNA 1 (BBOX1-AS1) participates in the regulation of esophageal squamous cell carcinoma (ESCC) carcinogenesis. Herein, we validated that BBOX1-AS1 was notably overexpressed in ESCC tissues compared to the adjacent non-tumor tissues and significantly correlated with tumor sizes. BBOX1-AS1 enhanced the malignant behavior of ESCC cells in vitro, such as cell proliferation, migration, and invasion. In addition, knockdown of BBOX1-AS1 augmented the proportion of apoptotic cells in ESCC cells. Mechanistically, BBOX1-AS1 regulated HOXB7 expression, and rescue experiments indicated that silencing of HOXB7 could abolish the malignant phenotypes mediated by BBOX1-AS1 to a certain extent. Moreover, HOXB7 participated in the activation of the Wnt/ß-catenin signaling pathway. In summary, our findings substantiated that BBOX1-AS1 could activate the Wnt/ß-catenin pathway by upregulating HOXB7 expression to promote ESCC progression, providing a rationale to develop novel therapeutic approaches.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Homeodomain Proteins , RNA, Long Noncoding , beta Catenin , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , beta Catenin/genetics , beta Catenin/metabolism
15.
J Cell Commun Signal ; 16(2): 253-270, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34637090

ABSTRACT

Endometrial cancer (EC) is one of the most common types of gynecological cancer. Hypoxia is an important clinical feature and regulates various tumor processes. However, the prognostic value of hypoxia-related lncRNA in EC remains to be further elucidated. Here, we aimed to characterize the molecular features of EC by the development of a classification system based on the expression profile of hypoxia-related lncRNA. Based on univariate Cox regression analysis, we identified 17 hypoxia-related lncRNAs significantly associated with overall survival. Next, the least absolute shrinkage and selection operator Cox regression model was utilized to construct a multigene signature in the TCGA EC cohort. The risk score was confirmed as an independent predictor for overall survival in multivariate Cox regression analysis and receiver operating characteristic (ROC) curve analysis. Besides, the survival time of EC patients in different risk group was significantly correlated to clinicopathologic factors, such as age, stage and grade. Furthermore, hypoxia-related lncRNA associated with the high-risk group were involved in various aspects of the malignant progression of EC via Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and Gene Set Enrichment Analysis. Moreover, the risk score was closely correlated to immunotherapy response, microsatellite instability and tumor mutation burden. Finally, we select one hypoxia-related lncRNA SOS1-IT1 to validate its role in hypoxia and EC progression. Interestingly, we found SOS1-IT1 was overexpressed in tumor tissues, and closely correlated with clinicopathological parameters of EC. The expression level of SOS1-IT1 was significantly increased under hypoxia condition. Additionally, the important hypoxia regulatory factor HIF-1α can directly bind SOS1-IT1 promoter region, and affect its expression level. In summary, this study established a new EC classification based on the hypoxia-related lncRNA signature, thereby provide a novel sight to understand the potential mechanism of human EC development.

16.
J Clin Lab Anal ; 36(1): e24118, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34812534

ABSTRACT

BACKGROUND: TP53 is an important tumor suppressor gene on human 17th chromosome with its mutations more than 60% in tumor cells. Lung cancer is the highest incidence malignancy in men around the world. N-6 methylase (m6A) is an enzyme that plays an important role in mRNA splicing, translation, and stabilization. However, its role in TP53-mutant non-small-cell lung cancer (NSCLC) remains unknown. METHOD: First, we investigated 17 common m6A regulators' prognostic values in NSCLC. Then, after the establishment of risk signature, we explored the diagnostic value of m6A in TP53-mutant NSCLC. Finally, gene set enrichment analysis (GSEA), gene ontology (GO) enrichment analysis, and differential expression analysis were used to reveal the possible mechanism of m6A regulators affecting TP53-mutant NSCLC patients. RESULTS: Study showed that nine m6A regulators (YTHDC2, METTL14, FTO, METTL16, YTHDF1, HNRNPA2B1, RBM15, KIAA1429, and WTAP) were expressed differently between TP53-mutant and wild-type NSCLC (p < 0.05); and ALKBH5 and HNRNPA2B1 were associated with the prognostic of TP53-mutant patients. After construction of the risk signature combined ALKBH5 and HNRNPA2B1, we divided patients with TP53 mutations into high- and low-risk groups, and there was a significant survival difference between two groups. Finally, 338 differentially expression genes (DEGs) were found between high- and low-risk groups. GO enrichment analysis, PPI network, and GSEA enrichment analysis showed that m6A may affect the immune environment in extracellular and change the stability of mRNA. CONCLUSION: In conclusion, m6A regulators can be used as prognostic predictors in TP53-mutant patients.


Subject(s)
Methyltransferases/genetics , Tumor Suppressor Protein p53/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Computational Biology , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Methylation , Mutation/genetics , Prognosis
17.
Cancer Cell Int ; 21(1): 624, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823534

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) have been verified to play fatal role in regulating the progression of lung adenocarcinoma (LUAD). Although lncRNAs play important role in regulating the autophagy of tumor cells, the function and molecular mechanism of LINC01559 in regulating lung cancer development remain to be elucidated. METHOD AND MATERIALS: In this study, we used bioinformatics to screen out autophagy-related lncRNAs from TCGA-LUAD repository. Then the least absolute shrinkage and selection operator (LASSO) regression was applied to establish the signature of autophagy-related lncRNAs so that clinical characteristics and survival in LUAD patients be evaluated. Finally, we selected the most significant differences lncRNA, LINC01559, to verify its function in regulating LUAD progression in vitro. RESULTS: We found high expression of LINC01559 indicates lymph node metastasis and poor prognosis. Besides, LINC01559 promotes lung cancer cell proliferation and migration in vitro, by enhancing autophagy signal pathway via sponging hsa-miR-1343-3p. CONCLUSION: We revealed a novel prognostic model based on autophagy-related lncRNAs, and provide a new therapeutic target and for patients with lung adenocarcinoma named LINC01559.

18.
J Clin Lab Anal ; 35(11): e23951, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34558724

ABSTRACT

BACKGROUND: N-6 methylation (m6A) pushes forward an immense influence on the occurrence and development of lung adenocarcinoma (LUAD). However, the methylation on non-coding RNA in LUAD, especially long non-coding RNA (lncRNA), has not been received sufficient attention. METHODS: Spearman correlation analysis was used to screen lncRNA correlated with m6A regulators expression from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) repositories, respectively. Then, the least absolute shrinkage and selection operator (LASSO) was applied to build a risk signature consisting m6A-related lncRNA. Univariate and multivariate independent prognostic analysis were applied to evaluate the performance of signature in predicting patients' survival. Next, we applied Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) to conduct pathway enrichment analysis of 3344 different expression genes (DEGs). Finally, we set up a competing endogenous RNAs (ceRNA) network to this lncRNA. RESULTS: A total of 85 common lncRNAs were selected to acquire the components related to prognosis. The final risk signature established by LASSO regression contained 11 lncRNAs: ARHGEF26-AS1, COLCA1, CRNDE, DLGAP1-AS2, FENDRR, LINC00968, TMPO-AS1, TRG-AS1, MGC32805, RPARP-AS1, and TBX5-AS1. M6A-related lncRNA risk score could predict the prognostic of LUAD and was significantly associated with clinical pathological. And in the evaluation of lung adenocarcinoma tumor microenvironment (TME) by using ESTIMATE algorithm, we found a statistically significant correlation between risk score and stromal/immune cells. CONCLUSION: M6A-related lncRNA was a potential prognostic and therapy target for lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Adenosine/analogs & derivatives , Lung Neoplasms , RNA, Long Noncoding , Tumor Microenvironment/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenosine/chemistry , Adenosine/genetics , Adenosine/metabolism , Aged , Computational Biology , DNA Methylation/genetics , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Middle Aged , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome/genetics
19.
Front Cell Dev Biol ; 9: 660005, 2021.
Article in English | MEDLINE | ID: mdl-34277607

ABSTRACT

The development of temozolomide (TMZ) resistance in glioma leads to poor patient prognosis. Sorafenib, a novel diaryl urea compound and multikinase inhibitor, has the ability to effectively cross the blood-brain barrier. However, the effect of sorafenib on glioma cells and the molecular mechanism underlying the ability of sorafenib to enhance the antitumor effects of TMZ remain elusive. Here, we found that sorafenib could enhance the cytotoxic effects of TMZ in glioma cells in vitro and in vivo. Mechanistically, the combination of sorafenib and TMZ induced mitochondrial depolarization and apoptosis inducing factor (AIF) translocation from mitochondria to nuclei, and this process was dependent on STAT3 inhibition. Moreover, the combination of sorafenib and TMZ inhibited JAK2/STAT3 phosphorylation and STAT3 translocation to mitochondria. Inhibition of STAT3 activation promoted the autophagy-associated apoptosis induced by the combination of sorafenib and TMZ. Furthermore, the combined sorafenib and TMZ treatment induced oxidative stress while reactive oxygen species (ROS) clearance reversed the treatment-induced inhibition of JAK2/STAT3. The results indicate that sorafenib enhanced the temozolomide sensitivity of human glioma cells by inducing oxidative stress-mediated autophagy and JAK2/STAT3-AIF axis.

20.
Mol Ther ; 29(5): 1821-1837, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33484966

ABSTRACT

Growing evidence indicates that N6-methyladenosine (m6A) is the most pervasive RNA modification in eukaryotic cells. However, the specific role of METTL3 in papillary thyroid carcinoma (PTC) initiation and development remains elusive. Here we found that downregulation of METTL3 was correlated with malignant progression and poor prognosis in PTC. A variety of gain- and loss-of-function studies clarified the effect of METTL3 on regulation of growth and metastasis of PTC cells in vitro and in vivo. By combining RNA sequencing (RNA-seq) and methylated RNA immunoprecipitation sequencing (meRIP-seq), our mechanistic studies pinpointed c-Rel and RelA as downstream m6A targets of METTL3. Disruption of METTL3 elicited secretion of interleukin-8 (IL-8), and elevated concentrations of IL-8 promoted recruitment of tumor-associated neutrophils (TANs) in chemotaxis assays and mouse models. Administration of the IL-8 antagonist SB225002 substantially retarded tumor growth and abolished TAN accumulation in immunodeficient mice. Our findings revealed that METTL3 played a pivotal tumor-suppressor role in PTC carcinogenesis through c-Rel and RelA inactivation of the nuclear factor κB (NF-κB) pathway by cooperating with YTHDF2 and altered TAN infiltration to regulate tumor growth, which extends our understanding of the relationship between m6A modification and plasticity of the tumor microenvironment.


Subject(s)
Adenosine/analogs & derivatives , Down-Regulation , Interleukin-8/genetics , Methyltransferases/genetics , Proto-Oncogene Proteins c-rel/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Adenosine/metabolism , Animals , Disease Progression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Methyltransferases/metabolism , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Neutrophil Infiltration , Prognosis , Sequence Analysis, RNA , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...