Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(7): 3911-3939, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33755451

ABSTRACT

Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the post-translational symmetric dimethylation of protein substrates. PRMT5 plays a critical role in regulating biological processes including transcription, cell cycle progression, RNA splicing, and DNA repair. As such, dysregulation of PRMT5 activity is implicated in the development and progression of multiple cancers and is a target of growing clinical interest. Described herein are the structure-based drug designs, robust synthetic efforts, and lead optimization strategies toward the identification of two novel 5,5-fused bicyclic nucleoside-derived classes of potent and efficacious PRMT5 inhibitors. Utilization of compound docking and strain energy calculations inspired novel designs, and the development of flexible synthetic approaches enabled access to complex chemotypes with five contiguous stereocenters. Additional efforts in balancing bioavailability, solubility, potency, and CYP3A4 inhibition led to the identification of diverse lead compounds with favorable profiles, promising in vivo activity, and low human dose projections.


Subject(s)
Aminoquinolines/therapeutic use , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Nucleosides/therapeutic use , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Aminoquinolines/chemical synthesis , Aminoquinolines/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Proliferation/drug effects , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Female , Humans , Mice, SCID , Molecular Docking Simulation , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/metabolism , Protein Binding , Protein-Arginine N-Methyltransferases/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL