Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37504080

ABSTRACT

Food safety related to drug residues in food has become a widespread public concern. Small-molecule drug residue analysis often relies on mass spectrometry, thin-layer chromatography, or enzyme-linked immunosorbent assays (ELISA). Some of these techniques have limited sensitivity and accuracy, while others are time-consuming, costly, and rely on specialized equipment that requires skilled operation. Therefore, the development of a sensitive, fast, and easy-to-operate biosensor could provide an accessible alternative to conventional small-molecule analysis. Here, we developed a nanocup array-enhanced metasurface plasmon resonance (MetaSPR) chip coupled with gold nanoparticles (AuNPs) (MSPRAN) to detect small molecules. As sulfamethazine drug residues in poultry eggs may cause health issues, we selected this as a model to evaluate the feasibility of using MSPRAN for small-molecule detection. The MSPRAN biosensor employed competitive immunoassay technology for sulfamethazine detection. The limit of detection was calculated as 73 pg/mL, with sensitivity approximately twice that of previously reported detection methods. Additionally, the recovery rate of the biosensor, tested in egg samples, was similar to that measured using ELISA. Overall, this newly developed MSPRAN biosensor platform for small-molecule detection provides fast and reliable results, facile operation, and is relatively cost-effective for application in food safety testing, environmental monitoring, or clinical diagnostics.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Gold/chemistry , Surface Plasmon Resonance , Sulfamethazine , Metal Nanoparticles/chemistry , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...