Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Phenomics ; 4(2): 187-202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38884059

ABSTRACT

The Shroom (Shrm) family of actin-binding proteins has a unique and highly conserved Apx/Shrm Domain 2 (ASD2) motif. Shroom protein directs the subcellular localization of Rho-associated kinase (ROCK), which remodels the actomyosin cytoskeleton and changes cellular morphology via its ability to phosphorylate and activate non-muscle myosin II. Therefore, the Shrm-ROCK complex is critical for the cellular shape and the development of many tissues, including the neural tube, eye, intestines, heart, and vasculature system. Importantly, the structure and expression of Shrm proteins are also associated with neural tube defects, chronic kidney disease, metastasis of carcinoma, and X-link mental retardation. Therefore, a better understanding of Shrm-mediated signaling transduction pathways is essential for the development of new therapeutic strategies to minimize damage resulting in abnormal Shrm proteins. This paper provides a comprehensive overview of the various Shrm proteins and their roles in morphogenesis and disease.

2.
Commun Biol ; 7(1): 28, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182721

ABSTRACT

T cell/B cell mixed phenotypic lymphocytes have been observed in different disease contexts, yet their presence and function in physiological conditions remain elusive. Here, we provide evidence for the existence of a lymphocyte subset endogenously expressing both T- and B-cell lineage markers in mice. The majority of these T/B phenotypic lymphocytes (CD3+CD19+) show an origin of pro/pre B cells and distribute widely in mouse bone marrow, lymph nodes, spleen, and peripheral blood. Functional assays show that these biphenotypic lymphocytes can be activated through stimulating TCR or BCR signaling pathways. Moreover, we show that these cells actively participate both the humoral and cellular immune responses elicited by vaccination. Compared to conventional T cells, these biphenotypic lymphocytes can secrete a higher level of IL-2 but a lower level of TNF-α upon antigen specific stimulation. An equivalent lymphocyte subset is found in freshly isolated human PBMCs and exhibits similar functionality, albeit at a lower frequency than in mice.


Subject(s)
B-Lymphocytes , Lymphocyte Subsets , Humans , Animals , Mice , Adaptor Proteins, Signal Transducing , Biological Assay , Lymph Nodes
3.
J Hepatol ; 80(1): 31-40, 2024 01.
Article in English | MEDLINE | ID: mdl-37827470

ABSTRACT

BACKGROUND & AIMS: Immunotherapy for chronic hepatitis B virus (HBV) infection has not yet demonstrated sufficient efficacy. We developed a non-integrative lentiviral-vectored therapeutic vaccine for chronic hepatitis B and tested its antiviral effects in HBV-persistent mice and two inactive HBsAg carriers. METHODS: Lentiviral vectors (LVs) encoding the core, preS1, or large HBsAg (LHBs) proteins of HBV were evaluated for immunogenicity in HBV-naïve mice and therapeutic efficacy in a murine model of chronic HBV infection. In addition, two inactive HBsAg carriers each received two doses of 5×107 transduction units (TU) or 1×108 TU of lentiviral-vectored LHBs (LV-LHBs), respectively. The endpoints were safety, LHBs-specific T-cell responses, and serum HBsAg levels during a 24-week follow-up. RESULTS: In the mouse models, LV-LHBs was the most promising in eliciting robust antigen-specific T cells and in reducing the levels of serum HBsAg and viral load. By the end of the 34-week observation period, six out of ten (60%) HBV-persistent mice vaccinated with LV-LHBs achieved serum HBsAg loss and significant depletion of HBV-positive hepatocytes in the liver. In the two inactive HBsAg carriers, vaccination with LV-LHBs induced a considerable increase in the number of peripheral LHBs-specific T cells in one patient, and a weak but detectable response in the other, accompanied by a sustained reduction of HBsAg (-0.31 log10 IU/ml and -0.46 log10 IU/ml, respectively) from baseline to nadir. CONCLUSIONS: A lentiviral-vectored therapeutic vaccine for chronic HBV infection demonstrated the potential to improve HBV-specific T-cell responses and deplete HBV-positive hepatocytes, leading to a sustained loss or reduction of serum HBsAg. IMPACT AND IMPLICATIONS: Chronic HBV infection is characterized by an extremely low number and profound hypo-responsiveness of HBV-specific T cells. Therapeutic vaccines are designed to improve HBV-specific T-cell responses. We show that immunization with a lentiviral-vectored therapeutic HBV vaccine was able to expand HBV-specific T cells in vivo, leading to reductions of HBV-positive hepatocytes and serum HBsAg.


Subject(s)
Hepatitis B, Chronic , Humans , Mice , Animals , Hepatitis B, Chronic/prevention & control , Hepatitis B, Chronic/drug therapy , Hepatitis B virus , Hepatitis B Surface Antigens , Lentivirus/genetics , Hepatitis B Vaccines/therapeutic use , Vaccination
5.
BMC Med ; 21(1): 183, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37189197

ABSTRACT

BACKGROUND: The confirmed cases in the current outbreak of Monkeypox are predominantly identified in the networks of men who have sex with men (MSM). The preexisting antibodies may profoundly impact the transmission of monkeypox virus (MPXV), however the current-day prevalence of antibodies against MPXV among gay men is not well characterized. METHODS: A cohort of gay men (n = 326) and a cohort of the general adult population (n = 295) were enrolled in this study. Binding antibodies responses against MPXV/vaccinia and neutralizing antibody responses against vaccinia virus (Tiantan strain) were measured. The antibody responses of these two cohorts were then compared, as well as the responses of individuals born before and in/after 1981 (when the smallpox vaccination ceased in China). Finally, the correlation between the anti-MPXV antibody responses and the anti-vaccinia antibody responses, and the associations between preexisting anti-orthopoxvirus antibody responses and the diagnosed sexually transmitted infections (STIs) in the MSM cohort were analyzed separately. RESULTS: Our data showed that binding antibodies against MPXV H3, A29, A35, E8, B6, M1 proteins and vaccinia whole-virus lysate could be detected in individuals born both before and in/after 1981, of which the prevalence of anti-vaccinia binding antibodies was significantly higher among individuals born before 1981 in the general population cohort. Moreover, we unexpectedly found that the positive rates of binding antibody responses against MPXV H3, A29, A35, E8 and M1 proteins were significantly lower among individuals of the MSM cohort born in/after 1981, but the positive rates of anti-MPXV B6 and anti-vaccinia neutralizing antibody responses were significantly higher among these individuals compared to those of age-matched participants in the general population cohort. Additionally, we demonstrated that the positive and negative rates of anti-MPXV antibody responses were associated with the anti-vaccinia antibody responses among individuals born before 1981 in the general population cohort, but no significant association was observed among individuals born in/after 1981 in both cohorts. The positive rates of both the binding and the neutralizing antibody responses were comparable between individuals with and without diagnosed STIs in the MSM cohort. CONCLUSIONS: Anti-MPXV and anti-vaccinia antibodies could be readily detected in an MSM cohort and a general population cohort. And a higher level of anti-vaccinia neutralizing antibody responses was observed among individuals who did not get vaccinated against smallpox in the MSM cohort compared to age-matched individuals in the general population cohort.


Subject(s)
Communicable Diseases , Mpox (monkeypox) , Orthopoxvirus , Sexual and Gender Minorities , Smallpox , Male , Humans , Adult , Antibodies, Neutralizing , Homosexuality, Male , Mpox (monkeypox)/prevention & control , Monkeypox virus/physiology , Vaccinia virus , Antibodies, Viral
6.
Hum Vaccin Immunother ; 19(1): 2168432, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36747308

ABSTRACT

Although hepatitis B virus (HBV) vaccination is recommended for hepatitis C virus (HCV)-infected individuals to avoid HBV superinfection, the persistence of their humoral and cell-mediated immunity responses to HBV vaccination is still under investigation. Patients with chronic hepatitis C (CHC) and matched healthy controls, who completed three doses of hepatitis B vaccine (HepB) in 2014, were followed up five years later. One booster dose of HepB was given to those with antibody against hepatitis B surface antigen (anti-HBs) lower than 10mIU/mL. Anti-HBs was tested at follow-up and on the 14th day after the booster dose, as well as HBsAg specific spot-forming cells of interferon γ and interleukin (IL) 2, 4, 5, and 6. At five years, only 56.58% of the CHC patients had sero-protective titers (≥10mIU/mL) of anti-HBs, compared to 70.83% in the controls (P < .05). Similarly, the geometric mean concentration (GMC) of anti-HBs in CHC patients was significantly lower than that in controls (16.95 vs 37.34 mIU/mL, P < .05). After the booster, both GMC and the rate of anamnestic response increased to a very high level in the two groups and the difference between them disappeared (P > .05). Multivariable analysis showed that HCV infection was an independent predictor factor to anti-HBs level at follow-up. HBsAg specific IL-6 was stronger in the CHC patients compared to the controls (P < .05). The data indicate that the durability of protective anti-HBs is poorer in CHC patients compared to healthy individuals, and impaired long-term anti-HBs responses might be associated with the increased HBsAg specific IL-6 responses.


Subject(s)
Hepatitis B , Hepatitis C , Cricetinae , Animals , Humans , Hepatitis B Surface Antigens , Follow-Up Studies , Vaccination , Immunization, Secondary , Hepacivirus , Interleukin-6 , Hepatitis B/prevention & control , Cricetulus , CHO Cells , Hepatitis B Vaccines , Hepatitis B Antibodies
7.
Int Immunopharmacol ; 114: 109534, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36476489

ABSTRACT

BACKGROUND: Viral persistence is a crucial factor that influences the transmissibility of SARS-CoV-2. However, the impacts of vaccination and physiological variables on viral persistence have not been adequately clarified. METHODS: We collected the clinical records of 377 COVID-19 patients, which contained unvaccinated patients and patients received two doses of an inactivated vaccine or an mRNA vaccine. The impacts of vaccination on disease severity and viral persistence and the correlations between 49 laboratory variables and viral persistence were analyzed separately. Finally, we established a multivariate regression model to predict the persistence of viral RNA. RESULTS: Both inactivated and mRNA vaccines significantly reduced the rate of moderate cases, while the vaccine related shortening of viral RNA persistence was only observed in moderate patients. Correlation analysis showed that 10 significant laboratory variables were shared by the unvaccinated mild patients and mild patients inoculated with an inactivated vaccine, but not by the mild patients inoculated with an mRNA vaccine. A multivariate regression model established based on the variables correlating with viral persistence in unvaccinated mild patients could predict the persistence of viral RNA for all patients except three moderate patients inoculated with an mRNA vaccine. CONCLUSION: Vaccination contributed limitedly to the clearance of viral RNA in COVID-19 patients. While, laboratory variables in early infection could predict the persistence of viral RNA.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Cohort Studies , Retrospective Studies , RNA, Viral , Vaccination , Antibodies, Viral
8.
Front Immunol ; 13: 1025931, 2022.
Article in English | MEDLINE | ID: mdl-36569899

ABSTRACT

Latent tuberculosis infection (LTBI) treatment is known to accelerate the decline in TB incidence, especially in high-risk populations. Mycobacterium tuberculosis (M. tb) expression profiles differ at different growth periods, and vaccines protective and therapeutic effects may increase when they include antigenic compositions from different periods. To develop a post-exposure vaccine that targets LTBI, we constructed four therapeutic DNA vaccines (A39, B37, B31, and B21) using different combinations of antigens from the proliferation phase (Ag85A, Ag85B), PE/PPE family (Rv3425), and latent phase (Rv2029c, Rv1813c, Rv1738). We compared the immunogenicity of the four DNA vaccines in C57BL/6j mice. The B21 vaccine stimulated the strongest cellular immune responses, namely Th1/Th17 and CD8+ cytotoxic T lymphocyte responses. It also induced the generation of strengthened effector memory and central memory T cells. In latently infected mice, the B21 vaccine significantly reduced bacterial loads in the spleens and lungs and decreased lung pathology. In conclusion, the B21 DNA vaccine can enhance T cell responses and control the reactivation of LTBI.


Subject(s)
Latent Tuberculosis , Tuberculosis , Vaccines, DNA , Animals , Mice , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Mice, Inbred C57BL
9.
Gut Microbes ; 14(1): 2117503, 2022.
Article in English | MEDLINE | ID: mdl-36100957

ABSTRACT

The origins of preexisting SARS-CoV-2 cross-reactive antibodies and their potential impacts on vaccine efficacy have not been fully clarified. In this study, we demonstrated that S2 was the prevailing target of the preexisting S protein cross-reactive antibodies in both healthy human and SPF mice. A dominant antibody epitope was identified on the connector domain of S2 (1147-SFKEELDKYFKNHT-1160, P144), which could be recognized by preexisting antibodies in both human and mouse. Through metagenomic sequencing and fecal bacteria transplant, we demonstrated that the generation of S2 cross-reactive antibodies was associated with commensal gut bacteria. Furthermore, six P144 reactive monoclonal antibodies were isolated from naïve SPF mice and were proven to cross-react with commensal gut bacteria collected from both human and mouse. A variety of cross-reactive microbial proteins were identified using LC-MS, of which E. coli derived HSP60 and HSP70 proteins were confirmed to be able to bind to one of the isolated monoclonal antibodies. Mice with high levels of preexisting S2 cross-reactive antibodies mounted higher S protein specific binding antibodies, especially against S2, after being immunized with a SARS-CoV-2 S DNA vaccine. Similarly, we found that levels of preexisting S2 and P144-specific antibodies correlated positively with RBD binding antibody titers after two doses of inactivated SARS-CoV-2 vaccination in human. Collectively, our study revealed an alternative origin of preexisting S2-targeted antibodies and disclosed a previously neglected aspect of the impact of gut microbiota on host anti-SARS-CoV-2 immunity.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Viral Vaccines , Animals , Antibodies, Monoclonal , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Escherichia coli , Humans , Mice , SARS-CoV-2
10.
Viruses ; 14(9)2022 09 11.
Article in English | MEDLINE | ID: mdl-36146817

ABSTRACT

Anti-HBc IgG is usually recognized as a diagnostic marker of hepatitis B, while the functional role anti-HBc IgG in HBV infection has not been fully elucidated. In this study, we firstly investigated the relationship between the anti-HBc IgG responses and the replication of HBV using AAV8-1.3HBV infected C57BL/6N mice. Our data showed that the anti-HBc IgG responses at the early phase of infection correlated negatively with the concentrations of circulating HBsAg and HBV DNA at both the early and chronic phases of infection. This observation was confirmed by an independent experiment using AAV8-1.3HBV infected C57BL/6J mice. Furthermore, to comprehend the potential causal relationship between the anti-HBc IgG responses and HBV infection, mice were treated with an anti-HBc monoclonal antibody at three days post AAV8-1.3HBV infection. Our data showed that the anti-HBc mAb significantly suppressed the fold increase of circulating HBsAg level, and the protective effect was not affected by NK cell depletion. Collectively, our study demonstrated that anti-HBc antibodies occurring at the early phase of HBV infection may contribute to the constraint of the virus replication, which might be developed as an immunotherapy for hepatitis B.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B , Animals , Antibodies, Monoclonal , DNA, Viral , Disease Models, Animal , Hepatitis B Antibodies , Hepatitis B Core Antigens , Hepatitis B virus/genetics , Immunoglobulin G , Mice , Mice, Inbred C57BL
11.
Viruses ; 14(8)2022 08 15.
Article in English | MEDLINE | ID: mdl-36016396

ABSTRACT

The gut microbiota is essential for good health. It has also been demonstrated that the gut microbiota can regulate immune responses against respiratory tract infections. Since the outbreak of the COVID-19 pandemic, accumulating evidence suggests that there is a link between the severity of COVID-19 and the alteration of one's gut microbiota. The composition of gut microbiota can be profoundly affected by COVID-19 and vice versa. Here, we summarize the observations of the mutual impact between SARS-CoV-2 infection and gut microbiota composition. We discuss the consequences and mechanisms of the bi-directional interaction. Moreover, we also discuss the immune cross-reactivity between SARS-CoV-2 and commensal bacteria, which represents a previously overlooked connection between COVID-19 and commensal gut bacteria. Finally, we summarize the progress in managing COVID-19 by utilizing microbial interventions.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Gastrointestinal Tract , Humans , Pandemics , SARS-CoV-2
12.
Front Immunol ; 13: 897879, 2022.
Article in English | MEDLINE | ID: mdl-35874751

ABSTRACT

A booster vaccination is called for constraining the evolving epidemic of SARS-CoV-2. However, the necessity of a new COVID-19 vaccine is currently unclear. To compare the effect of an Omicron-matched S DNA vaccine and an ancestral S DNA vaccine in boosting cross-reactive immunities, we firstly immunized mice with two-dose of a DNA vaccine encoding the spike protein of the ancestral Wuhan strain. Then the mice were boosted with DNA vaccines encoding spike proteins of either the Wuhan strain or the Omicron variant. Specific antibody and T cell responses were measured at 4 weeks post boost. Our data showed that the Omicron-matched vaccine efficiently boosted RBD binding antibody and neutralizing antibody responses against both the Delta and the Omicron variants. Of note, antibody responses against the Omicron variant elicited by the Omicron-matched vaccine were much stronger than those induced by the ancestral S DNA vaccine. Meanwhile, CD8+ T cell responses against both the ancestral Wuhan strain and the Omicron strain also tended to be higher in mice boosted by the Omicron-matched vaccine than those in mice boosted with the ancestral S DNA vaccine, albeit no significant difference was observed. Our findings suggest that an Omicron-matched vaccine is preferred for boosting cross-protective immunities.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2
13.
Vaccines (Basel) ; 10(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35891311

ABSTRACT

Interleukin-12 receptor ß1 (IL12RB1)-deficient individuals show increased susceptibilities to local or disseminated BCG infection and environmental mycobacteria infection. However, the low clinical penetrance of IL12RB1 deficiency and low recurrence rate of mycobacteria infection suggest that protective immunity still exists in this population. In this study, we investigated the mechanism of tuberculosis suppression using the IL12RB1-deficient mouse model. Our results manifested that Il12rb1-/- mice had significantly increased CFU counts in spleens and lungs, especially when BCG (Danish strain) was inoculated subcutaneously. The innate TNF-a and IFN-γ responses decreased, while the IL-17 responses increased significantly in the lungs of Il12rb1-/- mice. We also found that PPD-specific IFN-γ release was impaired in Il12rb1-/- mice, but the specific TNF-a release was not compromised, and the antibody responses were significantly enhanced. Moreover, correlation analyses revealed that both the innate and PPD-specific IFN-γ responses positively correlated with CFU counts, whereas the innate IL-12a levels negatively correlated with CFU counts in Il12rb1-/- mice lungs. Collectively, these findings proved that the adaptive immunities against mycobacteria are not completely nullified in Il12rb1-/- mice. Additionally, our results imply that IFN-γ responses alone might not be able to contain BCGitis in the setting of IL12RB1 deficiency.

14.
Front Immunol ; 13: 875236, 2022.
Article in English | MEDLINE | ID: mdl-35514964

ABSTRACT

A variety of methods have been explored to increase delivery efficiencies for DNA vaccine. However, the immunogenicity of DNA vaccines has not been satisfactorily improved. Unlike most of the previous attempts, we provided evidence suggesting that changing the injection site successively (successively site-translocated inoculation, SSTI) could significantly enhance the immunogenicity of DNA vaccines in a previous study. To simplify the strategy and to evaluate its impact on candidate SARS-CoV-2 vaccines, we immunized mice with either a SARS-CoV-2 spike-based DNA vaccine or a spike protein subunit vaccine via three different inoculation strategies. Our data demonstrated that S protein specific antibody responses elicited by the DNA vaccine or the protein subunit vaccine showed no significant difference among different inoculation strategies. Of interest, compared with the conventional site fixed inoculation (SFI), both successive site-translocating inoculation (SSTI) and the simplified translocating inoculation (STI) strategy improved specific T cell responses elicited by the DNA vaccine. More specifically, the SSTI strategy significantly improved both the monofunctional (IFN-γ+IL-2-TNF-α-CD8+) and the multifunctional (IFN-γ+IL-2-TNF-α+CD8+, IFN-γ+IL-2-TNF-α+CD4+, IFN-γ+IL-2+TNF-α+CD4+) T cell responses, while the simplified translocating inoculation (STI) strategy significantly improved the multifunctional CD8+ (IFN-γ+IL-2-TNF-α+CD8+, IFN-γ+IL-2+TNF-α+CD8+) and CD4+ (IFN-γ+IL-2-TNF-α+CD4+, IFN-γ+IL-2+TNF-α+CD4+) T cell responses. The current study confirmed that changing the site of intra muscular injection can significantly improve the immunogenicity of DNA vaccines.


Subject(s)
COVID-19 , Sexually Transmitted Diseases , Vaccines, DNA , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Interleukin-2 , Mice , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tumor Necrosis Factor-alpha
15.
EClinicalMedicine ; 43: 101226, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34901799

ABSTRACT

BACKGROUND: Inactivated COVID-19 vaccines are safe and effective in the general population with intact immunity. However, their safety and immunogenicity have not been demonstrated in people living with HIV (PLWH). METHODS: 42 HIV-1 infected individuals who were stable on combination antiretroviral therapy (cART) and 28 healthy individuals were enrolled in this open-label two-arm non-randomized study at Hubei Provincial Center for Disease Control and Prevention, China. Two doses of an inactivated COVID-19 vaccine (BBIBP-CorV) were given on April 22, 2021 and May 25, 2021, respectively. The reactogenicity of the vaccine were evaluated by observing clinical adverse events and solicited local and systemic reactions. Humoral responses were measured by anti-spike IgG ELISA and surrogate neutralization assays. Cell-mediated immune responses and vaccine induced T cell activation were measured by flow cytometry. FINDINGS: All the HIV-1 infected participants had a CD4+ T cell count >200 cells/µL both at baseline (659·0 ± 221·9 cells/µL) and 4 weeks after vaccination (476·9 ± 150·8 cells/µL). No solicited adverse reaction was observed among all participants. Similar binding antibody, neutralizing antibody and S protein specific T cell responses were elicited in PLWH and healthy individuals. PLWH with low baseline CD4+/CD8+ T cell ratios (<0·6) generated lower antibody responses after vaccination than PLWH with medium (0·6∼1·0) or high (≥1·0) baseline CD4+/CD8+ T cell ratios (P<0·01). The CD3+, CD4+ and CD8+ T cell counts of PLWH decreased significantly after vaccination (P<0·0001), but it did not lead to any adverse clinical manifestation. Moreover, we found that the general HIV-1 viral load among the PLWH cohort decreased significantly after vaccination (P=0·0192). The alteration of HIV-1 viral load was not significantly associated with the vaccine induced CD4+ T cell activation (P>0·2). INTERPRETATION: Our data demonstrated that the inactivated SARS-CoV-2 vaccine was safe, immunogenic in PLWH who are stable on cART with suppressed viral load and CD4+ T cell count > 200 cells/µL. However, the persistence of the vaccine-induced immunities in PLWH need to be further investigated.

16.
Stud Health Technol Inform ; 284: 421-425, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34920562

ABSTRACT

Firstly, we form the Pediatric Nursing-Knowledge Base for Hyperthermia, which combines publicly clinical practice guidelines and nursing routines of hyperthermia management. Then, following the nursing process framework, the system is developed by clinical decision support technology. Finally, a pre- and post-test is adopted to examine the effectiveness, usability and feasibility before and after using the system. Its effectiveness is examined by nursing records quality including completeness of nursing assessment, timeliness of nursing diagnosis, individualization of nursing interventions, and timeliness of nursing evaluation. Its usability and feasibility are assessed using the Clinical Nursing Information System Effectiveness Evaluation Scale. There is a significant difference between the two groups in effectiveness, usability and feasibility. Although the system is developed specifically for our hospital workflow and processes, the Pediatric Nursing-Knowledge Base for Hyperthermia and workflow for hyperthermia management in this study can be used as a reference to other hospitals.


Subject(s)
Decision Support Systems, Clinical , Hyperthermia, Induced , Child , Humans , Pediatric Nursing
18.
Comput Inform Nurs ; 40(2): 131-137, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34347639

ABSTRACT

This article describes the development process and application of the Pediatric Nursing-Clinical Decision Support System for Hyperthermia. Firstly, we formed the Pediatric Nursing-Knowledge Base for Hyperthermia, which combines publicly available clinical practice guidelines and nursing routines of hyperthermia management. Then, following the nursing process framework, the system was developed using clinical decision support technology. Finally, a pre- and post-test were adopted to examine the effectiveness, usability, and feasibility before (1st to 31st of August 2018) and after (1st to 31st of December 2019) using the system. Its effectiveness was examined by analysis of nursing records' quality, including completeness of nursing assessment, timeliness of nursing diagnosis, individualization of nursing interventions, and timeliness of nursing evaluation. Its usability and feasibility were assessed using the Clinical Nursing Information System Effectiveness Evaluation Scale. There was a significant difference between the two groups in effectiveness, usability, and feasibility. Although the system was developed specifically for our hospital workflow and processes, the Pediatric Nursing-Knowledge Base for Hyperthermia and workflow for hyperthermia management in this study can be used as a reference to other hospitals.


Subject(s)
Decision Support Systems, Clinical , Hyperthermia, Induced , Child , Hospitals , Humans , Pediatric Nursing , Workflow
19.
Nat Immunol ; 22(9): 1127-1139, 2021 09.
Article in English | MEDLINE | ID: mdl-34413521

ABSTRACT

Follicular helper T (TFH) cells are a specialized subset of CD4+ T cells that essentially support germinal center responses where high-affinity and long-lived humoral immunity is generated. The regulation of TFH cell survival remains unclear. Here we report that TFH cells show intensified lipid peroxidation and altered mitochondrial morphology, resembling the features of ferroptosis, a form of programmed cell death that is driven by iron-dependent accumulation of lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the major lipid peroxidation scavenger and is necessary for TFH cell survival. The deletion of GPX4 in T cells selectively abrogated TFH cells and germinal center responses in immunized mice. Selenium supplementation enhanced GPX4 expression in T cells, increased TFH cell numbers and promoted antibody responses in immunized mice and young adults after influenza vaccination. Our findings reveal the central role of the selenium-GPX4-ferroptosis axis in regulating TFH homeostasis, which can be targeted to enhance TFH cell function in infection and following vaccination.


Subject(s)
Ferroptosis/physiology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Selenium/pharmacology , T Follicular Helper Cells/physiology , Adolescent , Adult , Animals , Cell Survival/immunology , Child , Female , Germinal Center/cytology , Germinal Center/immunology , Homeostasis/drug effects , Homeostasis/genetics , Humans , Immunity, Humoral/immunology , Influenza Vaccines/immunology , Lipid Peroxidation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/physiology , Ovalbumin , T Follicular Helper Cells/immunology , Vaccination , Young Adult
20.
Front Cell Dev Biol ; 9: 678377, 2021.
Article in English | MEDLINE | ID: mdl-34169075

ABSTRACT

Schistosoma japonicum infection showed protective effects against allergic airway inflammation (AAI). However, controversial findings exist especially regarding the timing of the helminth infection and the underlying mechanisms. Most previous studies focused on understanding the preventive effect of S. japonicum infection on asthma (infection before allergen sensitization), whereas the protective effects of S. japonicum infection (allergen sensitization before infection) on asthma were rarely investigated. In this study, we investigated the protective effects of S. japonicum infection on AAI using a mouse model of OVA-induced asthma. To explore how the timing of S. japonicum infection influences its protective effect, the mice were percutaneously infected with cercaria of S. japonicum at either 1 day (infection at lung-stage during AAI) or 14 days before ovalbumin (OVA) challenge (infection at post-lung-stage during AAI). We found that lung-stage S. japonicum infection significantly ameliorated OVA-induced AAI, whereas post-lung-stage infection did not. Mechanistically, lung-stage S. japonicum infection significantly upregulated the frequency of regulatory T cells (Treg cells), especially OVA-specific Treg cells, in lung tissue, which negatively correlated with the level of OVA-specific immunoglobulin E (IgE). Depletion of Treg cells in vivo partially counteracted the protective effect of lung-stage S. japonicum infection on asthma. Furthermore, transcriptomic analysis of lung tissue showed that lung-stage S. japonicum infection during AAI shaped the microenvironment to favor Treg induction. In conclusion, our data showed that lung-stage S. japonicum infection could relieve OVA-induced asthma in a mouse model. The protective effect was mediated by the upregulated OVA-specific Treg cells, which suppressed IgE production. Our results may facilitate the discovery of a novel therapy for AAI.

SELECTION OF CITATIONS
SEARCH DETAIL
...