Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 345: 123499, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38350535

ABSTRACT

Rare earth elements (REEs) are widely utilized in industries. However, The specific exposure features of REEs and potential biomarkers of exposure in occupational populations remain unclear. In this study, we evaluated the external and internal REEs exposure levels among the participants working in the ionic rare earth smelting plant. For the external exposure, the concentrations of 14 REEs and total rare earth elements (ΣREEs) in airborne particles were significantly elevated in the REEs-exposed versus non-exposed group (P < 0.05). Meanwhile, the levels of Yttrium (Y), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Thulium (Tm), Ytterbium (Yb), and ΣREEs in urine were higher in the REEs-exposed group compared to the non-exposed group (P < 0.05). Notably, a significant positive correlation was observed between Y in both the airborne particles and urine samples as well as Gd, and the Spearman correlation coefficient was 0.53 and 0.39 respectively, both P < 0.05. Conversely, no statistically significant differences were found in the levels of 15 REEs or ΣREEs in the blood samples between the REEs-exposed group and non-exposed group. Moreover, the concentrations of ΣREEs and 9 REEs in nail samples of the exposed group were significantly higher than those of the non-exposed group (P < 0.05), and the composition ratios of REEs in the nail samples closely resembled those found in individual airborne particles. Therefore, nail and urine samples were proposed to reflect long-term and short-term exposure to ionic rare earth respectively. Exposure biomarkers confirmed by external and internal exposure characteristics accurately provide the situation of human exposure to REEs environment, and have profound significance for monitoring and evaluating the level of REEs pollution in human body. It also provides a vital basis to find out the effect biomarkers, susceptible biomarkers and the health effects of rare earth environment for the future research.


Subject(s)
Metals, Rare Earth , Humans , Yttrium , Dysprosium , Biomarkers
2.
Water Res ; 252: 121184, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377699

ABSTRACT

Singlet oxygen (1O2) is extensively employed in the fields of chemical, biomedical and environmental. However, it is still a challenge to produce high- concentration 1O2 by dioxygen activation. Herein, a system of carbon-supported rare-earth oxide nanocluster and single atom catalysts (named as RE2O3/RE-C, RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y) with similar morphology, structure, and physicochemical characteristic are constructed to activate dissolved oxygen (DO) to enhance 1O2 production. The catalytic activity trends and mechanisms are revealed experimentally and are also proven by theoretical analyses and calculations. The 1O2 generation activity trend is Gd2O3/Gd-C>Er2O3/Er-C>Sm2O3/Sm-C>pristine carbon (C). More than 95.0% of common antibiotics (ciprofloxacin, ofloxacin, norfloxacin and carbamazepine) can be removed in 60 min by Gd2O3/Gd-C. Density functional theory calculations indicate that Gd2O3 nanoclusters and Gd single atoms exhibit the moderate adsorption energy of ·O2- to enhance 1O2 production. This study offers a universal strategy to enhance 1O2 production in dioxygen activation for future application and reveals the natural essence of basic mechanisms of 1O2 production via rare-earth oxide nanoclusters and rare-earth single atoms.


Subject(s)
Metals, Rare Earth , Singlet Oxygen , Oxides/chemistry , Oxygen , Anti-Bacterial Agents , Metals, Rare Earth/analysis , Metals, Rare Earth/chemistry
3.
Int J Biol Macromol ; 253(Pt 1): 126505, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37648124

ABSTRACT

Poly (ß-L-malic acid) (PMLA) is a biopolymer used in food and medical fields. However, the industrial processes are susceptible to the pollution of CaSO4 waste and organic solvent owing to the heavy use of CaCO3 in fermentation process and organic solvents in isolation process. This study developed an organic solvent and CaSO4 -free process for the industrial-scale production of PMLA. Firstly, calcium ion was removed at pH 9.2 by pH adjustment with Na2CO3, and the generated CaCO3 was reused in the fermentation process. Then, the D296 resin was selected to isolate the PMLA from the Ca2+-free broth, where the adsorption data were both primely described by the Freundlich and Langmuir equation, while Freundlich model better fit the process than Langmuir equation, indicating that it was non-monolayer adsorption of PMLA on the resin. Meanwhile, a three-step gradient elution with phosphate buffer (i.e., 0.2 mol/L, pH 7.0) containing 0.1, 0.2 and 1 mol/L NaCl was developed to recover PMLA. Finally, a PES15 membrane was selected to recover the PMLA from the elution solution, which could be reused in the next cycle. As a result, the PMLA with a purity of 98.89 % was obtained with the developed green process. In the developed process, it removed the pollution of organic solvent and calcium waste for the biosynthesis of PMLA on an industrial scale, which also offers a sustainable and green route for the biosynthesis of other carboxylic acids.


Subject(s)
Aureobasidium , Polymers , Aureobasidium/metabolism , Polymers/metabolism , Calcium , Ion Exchange , Fermentation , Malates , Solvents
4.
Environ Sci Pollut Res Int ; 30(36): 86232-86243, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37402046

ABSTRACT

The bioresource utilization of herbal biomass residues (HBRs) has been receiving more attention. Herein, three different HBRs from Isatidis Radix (IR) and Sophorae Flavescentis Radix (SFR) and Ginseng Radix (GR) were subjected to batch and fed-batch enzymatic hydrolysis to produce high-concentration glucose. Compositional analysis showed the three HBRs had substantial starch content (26.36-63.29%) and relatively low cellulose contents (7.85-21.02%). Due to their high starch content, the combined action of cellulolytic and amylolytic enzymes resulted in greater release of glucose from the raw HBRs compared to using the individual enzyme alone. Batch enzymatic hydrolysis of 10% (w/v) raw HBRs with low loadings of cellulase (≤ 10 FPU/g substrate) and amylolytic enzymes (≤ 5.0 mg/g substrate) led to a high glucan conversion of ≥ 70%. The addition of PEG 6000 and Tween 20 did not contribute to glucose production. Furthermore, to achieve higher glucose concentrations, fed-batch enzymatic hydrolysis was conducted using a total solid loading of 30% (w/v). After 48-h of hydrolysis, glucose concentrations of 125 g/L and 92 g/L were obtained for IR and SFR residues, respectively. GR residue yielded an 83 g/L glucose concentration after 96 h of digestion. The high glucose concentrations produced from these raw HBRs indicate their potential as ideal substrate for a profitable biorefinery. Notably, the obvious advantage of using these HBRs is the elimination of the pretreatment step, which is typically required for agricultural and woody biomass in similar studies.


Subject(s)
Cellulase , Glucose , Glucose/chemistry , Starch , Biomass , Cellulose , Glucans , Hydrolysis , Cellulase/chemistry
5.
Chemosphere ; 339: 139633, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37516322

ABSTRACT

To efficiently break down residual sulfonamide antibiotics in environmental water, Yb-Sb co-doped Ti/SnO2 electrodes were fabricated using a solvothermal method. The effect of different amounts of Yb doping on the properties of the electrodes was studied. When the atom ratio of Sn: Yb is 100 : 7.5 in the preparation, the as-obtained coral-like electrodes (denoted as Yb 7.5%) possessed the smallest diameter of spherical particles on the surfaces, to result in the denser surface, highest electrocatalytic activity and smallest resistance of the electrode. As anode for electrocatalytic degradation of sulfamethoxazole, the Yb 7.5% electrode showed a degradation rate of 92% in 90 min, which was much higher than that of Yb 0% electrode (62.7% degradation rate). The electrocatalytic degradation of sulfamethoxazole was investigated with varying current densities and initial concentrations. Results indicated that the degradation process followed pseudo-first-order kinetics, and the degradation rate constants for Yb 7.5% and Yb 0% electrodes were 0.0278 min-1 and 0.0114 min-1, respectively. Furthermore, the service life of Ti/SnO2 electrodes was significantly improved after Yb doping, as demonstrated by accelerated life testing. Yb 7.5% exhibited a service life that was 2.7 times longer than that of Yb 0%. This work offers a new approach to construct Yb-Sb co-doped Ti/SnO2 electrodes with excellent electrooxidation activity and high stability for the electrochemical oxidation degradation of sulfamethoxazole.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Titanium/chemistry , Tin Compounds/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Electrodes
6.
Int J Biol Macromol ; 242(Pt 2): 124720, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37182630

ABSTRACT

Poly (ß-L-malic acid) (PMLA) is attracting industrial interest for its potential application in medicine and other industries, whose functions primarily depend upon its molecular size and chemical structure. Up to now, the fractionation and characterization of PMLA produced by Aureobasidium spp. were still unclear. In this study, the product from A. melanogenum ipe-1 was effectively fractionated using 300 and 50 kDa membranes. During the filtration, the mechanisms of membrane fouling were illegible since the PMLA can both reject and permeate the membrane, while the main fouling mechanism varied between standard blocking and complete blocking during the diafiltration. After fractionation, 14.0, 8.4 and 77.6 % of the PMLAs with Mws of 75,134, 21,344 and 10,056 Da were distributed in the 300 kDa retentate after diafiltrating, 50 kDa retentate after diafiltrating, and the 50 kDa permeate, respectively. The Mw/Mns of the PMLAs were 4.12, 1.92, and 1.12 in the three fractions. Based on characteristic spectra of NMR, HPLC and FTIR, the product was not usual L-malic acid monomers, but glucose-terminated PMLA. The glucose was located at the terminal hydroxyl of PMLA. These results would serve as a valuable guide for process design and practical operation in subsequent industrial application.


Subject(s)
Aureobasidium , Polymers , Aureobasidium/metabolism , Polymers/chemistry , Fermentation , Malates/chemistry , Poly A
7.
Environ Sci Pollut Res Int ; 30(27): 70731-70741, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37155091

ABSTRACT

Adsorption of vanadium from wastewater defends the environment from toxic ions and contributes to recover the valuable metal. However, it is still challenging for the separation of vanadium (V5+) and chromium (Cr6+) because of their similar properties. Herein, a kind of CeO2 nanorod containing oxygen vacancies is facilely synthesized which displays ultra-high selectivity of V5+ against various competitive ions (i.e., Fe, Mn, Cr, Ni, Cu, Zn, Ga, Cd, Ba, Pb, Mg, Be, and Co). Moreover, a large separation factor (SFV/Cr) of 114,169.14 for the selectivity of V5+ is achieved at the Cr6+/V5+ ratio of 80 with the trace amount of V5+ (~ 1 mg/L). The results show that the process of V5+ uptake is the monolayer homogeneous adsorption and is controlled by external and intraparticle diffusions. In addition, it also shows that V5+ is reduced to V3+ and V4+ and then formation of V-O complexation. This work offers a novel CeO2 nanorod material for efficient separation of V5+ and Cr6+ and also clarifies the mechanism of the V5+ adsorption on the CeO2 surface.


Subject(s)
Vanadium , Water Pollutants, Chemical , Chromium/analysis , Ions , Wastewater , Adsorption , Water Pollutants, Chemical/analysis
8.
Bioresour Technol ; 380: 129085, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37100297

ABSTRACT

Avicel cellulose was pretreated using two commonly used carboxylic acid-based deep eutectic solvents, i.e., choline chloride-lactic acid and choline chloride-formic acid. The pretreatment process resulted in the formation of cellulose esters with lactic acid and formic acid, which was confirmed by infrared and nuclear magnetic resonance spectra. Surprisingly, the esterified cellulose led to a significant decrease in the 48-h enzymatic glucose yield (≥75%) compared to raw Avicel cellulose. Analysis of changes in cellulose properties caused by pretreatment, including crystallinity, degree of polymerization, particle size and cellulose accessibility, contradicted the observed decline in enzymatic cellulose hydrolysis. However, removing the ester groups through saponification largely recovered the reduction in cellulose conversion. The decreased enzymatic cellulose hydrolysis by esterification may be attributed to changes in the interaction between cellulose-binding domain of cellulase and cellulose. These findings provide valuable insights into improving the saccharification of lignocellulosic biomass pretreated by carboxylic acid-based DESs.


Subject(s)
Cellulose , Lignin , Cellulose/chemistry , Solvents/chemistry , Lignin/chemistry , Deep Eutectic Solvents , Hydrolysis , Esterification , Carboxylic Acids , Choline/chemistry , Lactic Acid , Biomass , Esters
9.
J Colloid Interface Sci ; 638: 461-474, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36758258

ABSTRACT

Fluorine-containing waste is one kind of hazardous waste characteristic by hard disposal and utilization, it is an attractive way to prepare for fluoride-based luminescent matrix. In this work, to realize the high value-added utilization of fluorine-containing waste and reduce cost of the raw materials for preparation near-infrared (NIR) glass-ceramic (GC) photocatalyst, the pure fluoride of luminescent matrix was replaced by introducing fluorine-containing waste. The waste contained NIR GC photocatalyst was synthesis by the method of facile in-situ etching of an upconversion GC with HCl, which possesses core-shell structure, where the GC micro-powder including optically active centers lanthanides doped CaF2 nanocrystals are displayed as the core, and the BiOCl is as the superficial coating. The upconversion emission performance of CaF2 based luminescent matrix in photocatalyst is not weakened with HCl etching. NIR GC photocatalyst has high methyl orange and enrofloxacin degradation rate of 86 % and 82 % over 180 min after NIR light irradiation, respectively. The UV-Vis-NIR photocatalytic activity was enhanced degradation rate (93 % in 15 min) of enrofloxacin compared with those of commercial P25 and BiOCl. In addition, the photocatalyst had stable photocatalytic activity and it also can be regenerated. The study provided references for high value-added utilization fluorine-containing waste.

10.
Appl Biochem Biotechnol ; 195(2): 844-860, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36214953

ABSTRACT

Carbon fixation and conversion based on Clostridium ljungdahlii have great potential for the sustainable production of biochemicals (i.e., 2,3-butanediol, acetic acid, and ethanol). Here, the effects of reducing agents on the production of biochemicals from H2/CO2 using C. ljungdahlii were studied. It was found that the element S and reducing power could significantly affect the production of biochemicals, and cysteine (Cys) was better than sodium sulfide for the production of biochemicals, especially for the production of 2,3-butanediol. Moreover, comparing to the control (i.e., without the addition of Cys), the gene expression profiles indicated that the fdh and adhE1 were significantly upregulated with the addition of Cys, which involved in pathways of the CO2 fixation and ethanol production. Therefore, the irreplaceability of Cys on the production of biochemicals was both caused by its utilization as a reducing agent and its effect on the metabolic pathway. Finally, compared to the control, the production of 2,3-butanediol was increased by 2.17 times under the addition of 1.7 g/L Cys.


Subject(s)
Carbon Dioxide , Cysteine , Carbon Dioxide/metabolism , Cysteine/metabolism , Clostridium/genetics , Clostridium/metabolism , Acetic Acid/metabolism , Ethanol/metabolism
11.
Environ Sci Technol ; 56(24): 18018-18029, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36445263

ABSTRACT

A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO42-), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel "etching-swelling-planting" strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO42- ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (-OH and -COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.


Subject(s)
Nylons , Wastewater , Nylons/chemistry , Membranes, Artificial , Anions , Ions
12.
ACS Appl Mater Interfaces ; 14(47): 53380-53389, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36380466

ABSTRACT

As the world is faced with the coronavirus disease 2019 (COVID-19) pandemic, photocatalytic antibacterial ceramics can reduce the consumption of disinfectants and improve the safety of the public health environment. However, these antibacterial ceramics are often limited by poor stability and low light utilization efficiency. Herein, an antibacterial ceramic was developed via the method of facile in situ etching of upconversion glass-ceramics (UGC) (FIEG) with HCl, in which the BiOCl nanosheets were in situ grown on the surface of GC to improve its stability and antibacterial activity. The results suggest that the upconversion antibacterial ceramics can harvest and utilize near-infrared (NIR) photons efficiently, which display notable antibacterial activity for Escherichia coli (E. coli) under NIR (≥780 nm) and visible light (420-780 nm) irradiation, with a maximum inactivation rate of 7.5 log in 30 min. Meanwhile, in the cycle experiment, more than 6 log inactivation of E. coli was achieved using an antibacterial ceramic sheet after 2-h NIR light irradiation, and the stability of the antibacterial ceramic was discussed. Furthermore, the reactive species, fluorescence-based live/dead cells, and cell structure of bacteria were analyzed to verify the antibacterial mechanism. This study provides a promising strategy for the construction of efficient and stable antibacterial ceramics.


Subject(s)
COVID-19 , Escherichia coli , Humans , Ceramics/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
13.
Int J Biol Macromol ; 223(Pt A): 722-731, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36370855

ABSTRACT

Poly (ß-L-malic acid) (PMLA) is attracting industrial interest for its potential application in medicine and other industries. In this study, electrolytic stimulation assisted PMLA production was developed. Firstly, it was found that the pentavalent nitrogen source (i.e., NO3-) was more suitable for PMLA production. Secondly, a usual single-chamber bioelectric-fermentation system (BES) cannot improve PMLA production, which can only promote cell growth. Then, a new single-chamber BES with an external circulation was developed, where the PMLA metabolism was further intensified. Finally, the integration of NO3- addition and electrolytic stimulation mode (c) showed a positive synergy on the PMLA production. Compared to the case without NO3- addition and electrolytic stimulation, the PMLA production was increased by 22.9 % using the integrated process. Moreover, compared to the case without the electrolytic stimulation mode (c), it was revealed that the different genes involved in 12 metabolic subsystems using the integrated process, where 31 and 177 genes were up-regulated and down-regulated, respectively. The up-regulated genes were mainly participated in melanin metabolic process, catalase activity, and oxidoreductase activity. Hence, the integration of electrolytic stimulation represents a novel approach to improve PMLA production.


Subject(s)
Malates , Polymers , Polymers/metabolism , Malates/pharmacology , Malates/metabolism , Fermentation , Electrolytes
14.
Bioresour Technol ; 364: 128102, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36243259

ABSTRACT

Available literature on Chinese medicinal herbal residues (CMHRs) bioconversion highlights pretreatment prior to saccharification with cellulase without considering the presence of starch constituent. Herein, four commonly found CMHRs were tested for starch content, and it was found they all contained starch with content ranging from 4.74% to 16.78%. Hydrolysis of raw CMHRs with combined cellulase and amylolytic enzymes yielded increments of 16.85% to 26.51% in 48-h glucan conversion compared to cellulase alone. Further study showed 48-h glucan conversion of raw CMHRs outperformed that pretreated by water-ethanol successive extraction, ultrasound and acid, but underperformed alkali-pretreated CMHRs. Although increasing 48-h glucan conversion in the range of 7.40% to 24.10% compared to raw CMHRs, alkaline pretreatment demonstrated low glucose recovery and incurred additional cost, making it unfavorable. Saccharification of the four raw CMHRs with combined enzymes seems like a preferred option considering the elimination of high-cost pretreatment step.

15.
J Environ Manage ; 323: 116197, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36126591

ABSTRACT

Baker's yeast industries generate highly polluted effluents, especially the cell free broth (i.e., vinasse) characterized by high chemical oxygen demand, nitrogen, and salts. In this work, it was found that the residual by-products (i.e., ethanol and acetic acid) and salts in the vinasse severely inhibited the cell growth, which hindered the reuse of the vinasse for the production of Saccharomyces cerevisiae. Through optimizing a suitable control strategy, the productions of ethanol and acetic acid were eliminated. Then, a nanofiltration membrane (i.e., NF5) was preferred for preliminarily and simultaneously separating and concentrating valuable molecules (i.e., invertase, food grade proteins and pigments) in the vinasse, and the main fouling mechanism was cake layer formation. Subsequently, a reverse osmosis membrane (RO) was suitable to separate and concentrate salts in the NF5 permeate, where the membrane fouling was negligible. Finally, the RO permeate was successfully reused for the production of S. cerevisiae. In addition, without calculating the benefit from the recovery of the valuable molecules, the cost of the integrated process can be decreased by 59.8% compared with the sole triple effect evaporation. Meanwhile, the volume of the fresh water used in the fermentation process can be decreased by 68.8%. Thus, it is a sustainable process for the cleaner production of baker's yeast using the integrated fermentation and membrane separation process.


Subject(s)
Saccharomyces cerevisiae , Waste Management , Acetic Acid/metabolism , Ethanol/metabolism , Fermentation , Nitrogen/metabolism , Saccharomyces cerevisiae/metabolism , Salts/metabolism , beta-Fructofuranosidase/metabolism
16.
ACS Omega ; 7(29): 25686-25692, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35910171

ABSTRACT

Identification of adsorption centers with atomic levels of adsorbents is crucial to study the adsorption of formaldehyde (HCHO), especially for an in-depth understanding of the mechanism of HCHO capture. Herein, we investigate the HCHO adsorption performance of one-dimensional (1D) nanoporous boron nitride (BN) fiber, and explore the adsorption mechanism by density functional theory (DFT) calculations, including adsorption energy change and Bader charge change, and experimental study as well. Research shows that the 1D nanoporous BN fiber possesses a high concentration of Lewis pairs, which act as Lewis acid and Lewis base sites associated with the fiber's electron-deficient and electron-rich features. It is worth noting that the HCHO removal efficiency of a typical sample is as high as 91%. This work may open the door to the field of adsorption of other pollutants by constructing Lewis pairs in the future.

17.
ACS Appl Mater Interfaces ; 14(31): 36132-36142, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35881887

ABSTRACT

Application of nanofiltration membranes in industries still has to contend with membrane fouling that causes a significant loss of separation performance. Herein, an innovative approach to design antifouling membranes with a narrowed pore size distribution by interfacial polymerization (IP) assisted by silane coupling agents is reported. An aqueous solution of piperazine anhydrous (PIP) and γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560) is employed to perform IP with an organic solution of trimesoyl chloride and tetraethyl orthosilicate (TEOS) on a porous support. In accordance with the results of molecular dynamics and dissipative particle dynamics simulations, the reactive additive KH560 accelerates the diffusion rate of PIP to enrich at the reaction boundary. Moreover, the hydrolysis/condensation of KH560 and TEOS at the aqueous/organic interface forms an interpenetrating network with the polyamide network, which regulates the separation layer structure. The characterization results indicate that the polyamide-silica membrane has a denser, thicker, and uniform separation layer. The mean pore size of the polyamide-silica membrane and the traditional polyamide membrane is 0.62 and 0.74 nm, respectively, and these correspond to the geometric standard deviation (namely, pore size distribution) of 1.39 and 1.97, respectively. It is proved that the narrower pore size distribution endows the polyamide-silica membrane with stronger antifouling performance (flux decay ratio decreases from 18.4 to 3.8%). Such a membrane also has impressive long-term antifouling stability during cane molasses decolorization at a high temperature (50 °C). The outcomes of this study not only provide a novel one-step multiple IP strategy to prepare antifouling nanofiltration membranes but also emphasize the importance of pore size distribution in fouling control for various industrial liquid separations.

18.
ACS Appl Mater Interfaces ; 14(10): 12204-12213, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35234029

ABSTRACT

Chemical cleaning is indispensable for the sustainable operation of nanofiltration (NF) in wastewater treatment. However, the common chemical cleaning methods are plagued by low cleaning efficiency, high chemical consumption, and separation performance deterioration. In this work, a chemoenzymatic cascade reaction is proposed for pollutant degradation and polyamide NF membrane cleaning. Glucose oxidase (GOD) enzymatic reaction in this cascade system produces hydrogen peroxide (H2O2) and gluconic acid to trigger the oxidation of foulants by Fe3O4-catalyzed Fenton reaction. By virtue of the microenvironment (pH and H2O2 concentration) engineering and substrate enrichments, this chemoenzymatic cascade reaction (GOD-Fe3O4) exhibits a favorable degradation efficiency for bisphenol A and methyl blue (MB). Thanks to the strong oxidizing degradation, the water flux of the NF10 membrane fouled by MB is almost completely recovered (∼95.8%) after a 3-cycle fouling/cleaning experiment. Meanwhile, the chemoenzymatic cascade reaction improves the applicability of the Fenton reaction in polyamide NF membrane cleaning because it prevents the membrane from damaging by high concentration of H2O2 and inhibits the secondary fouling caused by ferric hydroxide precipitates. By immobilizing GOD on the aminated Fe3O4 nanoparticles, a reusable cleaning agent is prepared for highly efficient membrane cleaning. This chemoenzymatic cascade reaction without the addition of an acid/base/oxidant provides a promising candidate for sustainable and cost-effective cleaning for the polyamide NF membrane.


Subject(s)
Membranes, Artificial , Water Purification , Hydrogen Peroxide , Nylons , Wastewater
19.
Molecules ; 27(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35164219

ABSTRACT

Firstly, 2,3-butanediol (2,3-BDO) is a chemical platform used in several applications. However, the pathogenic nature of its producers and the expensive feedstocks used limit its scale production. In this study, cane molasses was used for 2,3-BDO production by a nonpathogenic Clostridium ljungdahlii. It was found that cane molasses alone, without the addition of other ingredients, was favorable for use as the culture medium for 2,3-BDO production. Compared with the control (i.e., the modified DSMZ 879 medium), the differential genes are mainly involved in the pathways of carbohydrate metabolism, membrane transport, and amino acid metabolism in the case of the cane molasses alone. However, when cane molasses alone was used, cell growth was significantly inhibited by KCl in cane molasses. Similarly, a high concentration of sugars (i.e., above 35 g/L) can inhibit cell growth and 2,3-BDO production. More seriously, 2,3-BDO production was inhibited by itself. As a result, cane molasses alone with an initial 35 g/L total sugars was suitable for 2,3-BDO production in batch culture. Finally, an integrated fermentation and membrane separation process was developed to maintain high 2,3-BDO productivity of 0.46 g·L-1·h-1. Meanwhile, the varied fouling mechanism indicated that the fermentation properties changed significantly, especially for the cell properties. Therefore, the integrated fermentation and membrane separation process was favorable for 2,3-BDO production by C. ljungdahlii using cane molasses.


Subject(s)
Bioreactors , Butylene Glycols/metabolism , Clostridium/metabolism , Fermentation , Membranes/metabolism , Molasses/analysis , Batch Cell Culture Techniques , Butylene Glycols/chemistry , Clostridium/growth & development , Membranes/chemistry
20.
iScience ; 25(1): 103671, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35028540

ABSTRACT

Biocatalytic nanofiltration membranes (BNMs) exhibit great potentials in organic micropollutants removal attributed to its synergistic effect between enzyme catalysis and membrane separation. However, the difficulties in regeneration of the BNMs halted their economic practicality. Inspired by cell membranes with stimuli-responsive channels, we have developed the temperature-responsive BNMs with nanogating function by poly(N-isopropyl acrylamide) (PNIPAM) modification. PNIPAM modification increases the geometric confinement of the support layer to enzymes, thus improving enzyme loading, inhibiting enzyme leakage, and preventing membrane permeability decline caused by enzyme excess migration and aggregation. By optimizing the concentration of reaction monomers, modification time, and strategies, the PNIPAM-based BNMs show high bisphenol A (BPA) removal efficiency and long-term stability. Furthermore, the PNIPAM-polyethyleneimine-based BNMs can be easily regenerated at 38°C, and the laccase activity and BPA removal efficiency are fully recovered. This work would promote the real application of BNMs in bioconversion, drug delivery, and biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...