Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Biodivers ; 18(10): e2100512, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34347345

ABSTRACT

Two new phenol derivatives, namely insphenol A (1) and acetylpeniciphenol (2), along with seven known analogs (3-9), were isolated from the deep-sea cold seep-derived fungus, Aspergillus insuetus SD-512. The structures of 1 and 2 were established by extensive interpretation of NMR and mass spectroscopic data. The absolute configuration of 1 was determined by the combination of coupling constant analysis and acid hydrolysis. Among the isolated compounds, insphenol A (1) represents the first example of isopentenyl phenol derivative with a unique 1-glycosylation from the species Aspergillus insuetus. The isolated new compounds were evaluated for antibacterial activities against six human or aquatic pathogens, while compound 2 exhibited inhibitory effect against Edwardsiella tarda, Vibrio alginolyticus, and V. vulnificus, with MIC values of 4, 8, and 8 µg/mL, respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aspergillus/chemistry , Edwardsiella tarda/drug effects , Phenols/pharmacology , Vibrio/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Molecular Structure , Phenols/chemistry , Phenols/isolation & purification
2.
J Nat Prod ; 83(12): 3652-3660, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33322904

ABSTRACT

Three new ophiobolin sesterterpenoids, (6R)-16,17,21,21-O-tetrahydroophiobolin G (1), (6R)-16,17-dihydroophiobolin H (2), and (5S,6S)-16,17-dihydroophiobolin H (3), and three new farnesylated phthalide derivatives farnesylemefuranones D-F (9-11), along with five known ophiobolin analogues (4-8), were isolated and identified from the culture extract of Aspergillus insuetus SD-512, a deep-sea-derived fungus obtained from cold seep sediments collected at a depth of 1331 m. Among them, compounds 9-11 are rare examples of phthalide derivatives linked with farnesyl moieties via ether bonds. Their structures were established on the basis of detailed interpretation of the NMR spectroscopic and mass spectrometric data. X-ray crystallographic analysis, ECD calculations, and DP4+ probability analysis were performed to confirm the structures and establish the relative and absolute configurations of compounds 1-4. Compounds 3 and 9-11 showed broad-spectrum antibacterial activities, and differences in potencies could be assigned to structural modifications. This is the first report of secondary metabolites obtained from a deep sea cold-seep-derived fungus.


Subject(s)
Aspergillus/chemistry , Benzofurans/isolation & purification , Sesterterpenes/isolation & purification , Benzofurans/chemistry , Cold Temperature , Oceans and Seas , Prenylation , Sesterterpenes/chemistry , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL