Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Drug Discov Ther ; 17(4): 238-247, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37612046

ABSTRACT

Synthesis of nanoparticles using natural organic substances has attracted more attention due to avoiding inorganic toxicity. This work aimed to synthesize copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract as a reducing agent. The effects of pH of synthesis reaction were investigated. The obtained CuONPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Their particle size, size distribution, and zeta potential were determined using photon correlation spectrophotometry. Candida albicans is a major cause of chronic fungal infections due to its biofilms leading to severe drug resistance problems. In this study, in vitro antifungal and antibiofilm activities as well as killing kinetics of the synthesized CuONPs against C. albicans were investigated. Additionally, fungal biofilm was observed by using confocal laser scanning microscopy. The results showed that the pH of the synthesis reaction played an important role in the physicochemical properties and antifungal activities of the obtained CuONPs. CuONPs synthesized at pH 10 and 12 showed the relatively small and narrow size distribution with high negative zeta potential and time-dependent killing kinetics. Confocal laser scanning microscopy confirms obvious fungal biofilm reduction and increased fungal cell death after exposure to CuONPs. These findings suggest the optimal pH of CuONPs synthesis using C. sappan extract as a reducing agent. The results on antifungal and antibiofilm activities indicate that the obtained CuONPs can be a promising agent for treating fungal infection.


Subject(s)
Caesalpinia , Nanoparticles , Antifungal Agents/pharmacology , Candida albicans , Copper , Reducing Agents , Biofilms , Excipients , Plant Extracts/pharmacology , Oxides
2.
Arch Oral Biol ; 143: 105539, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36148767

ABSTRACT

OBJECTIVE: To investigate the antimicrobial activity of B. macrophylla kernel extract against mixed-species biofilms of E. faecalis, S. gordonii and C. albicans in vitro. To evaluate the efficacy of the extract as an intracanal medicament compared with Ca(OH)2 and chlorhexidine in ex vivo tooth model. METHODS: The antibiofilm effect of B. macrophylla kernel extract was determined by AlamarBlue™ assay and the effect on biofilms was visualized by LIVE/DEAD® BacLight™ viability test. Mixed-species biofilms were incubated into the tooth model (N = 42) for 21 days. The teeth were randomly divided into 4 medicament groups for 7 days: (i) normal saline, (ii) calcium hydroxide (Ca(OH)2), (iii) chlorhexidine gel, (iv) B. macrophylla kernel extract. Dentine samples were collected, qPCR with PMA was used to quantify the viability and species composition of each sample. SEM was used to visualize the effect of medicament on biofilm structure. RESULTS: The MBIC was 6.25 mg/mL and the MBEC was 50 mg/mL. The integrity of microbial cells was progressively compromised as concentration increased, resulting in greater cell death. Ex vivo tooth model revealed that biofilm treated with 50 mg/mL of the B. macrophylla extract demonstrated a significantly higher proportions of dead cells than in Ca(OH)2, chlorhexidine and normal saline groups (p < 0.01). Disruption of biofilm structure and enlargement of dentinal tubules was observed in B. macrophylla group on SEM. CONCLUSION: The extract of B. macrophylla kernel exhibited significant antibiofilm effect against the mixed-species biofilms of E. faecalis, S. gordonii and C. albicans.


Subject(s)
Calcium Hydroxide , Chlorhexidine , Bacteria , Biofilms , Calcium Hydroxide/pharmacology , Candida albicans , Chlorhexidine/pharmacology , Dental Pulp Cavity/microbiology , Enterococcus faecalis , Plant Extracts/pharmacology , Root Canal Irrigants/pharmacology , Saline Solution/pharmacology
3.
Sci Rep ; 11(1): 14870, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290338

ABSTRACT

This study aimed to investigate microwave-assisted extraction (MAE) of dried ginger and to develop a rice-based edible film incorporating ginger extract. The optimal MAE conditions of 400 W microwave power and an extraction time of 1 min were determined using a 32 full factorial design. The optimized extract showed total phenolic compounds (TPC, 198.2 ± 0.7 mg gallic acid equivalent/g), antioxidant activity measured by DPPH (91.4 ± 0.6% inhibition), ABTS (106.4 ± 3.1 mg Trolox/g), and FRAP (304.6 ± 5.5 mg Trolox/g), and bioactive compounds including 6-gingerol (71.5 ± 3.6 mg/g), 6-shogaol (12.5 ± 1.0 mg/g), paradol (23.1 ± 1.1 mg/g), and zingerone (5.0 ± 0.3 mg/g). Crude extract of dried ginger showed antimicrobial activity against Streptococcus mutans DMST 18777, with a minimum inhibitory concentration and minimum bactericidal concentration of 0.5 and 31.2 mg/mL, respectively. The rice-based edible film incorporating 3.2% (w/v) ginger extract tested against S. mutans DMST 18777 had a mean zone of inhibition of 12.7 ± 0.1 mm. Four main phenolic compounds, 6-gingerol, 6-shogaol, paradol, and zingerone, and six volatile compounds, α-curcumene, α-zingiberene, γ-muurolene, α-farnesene, ß-bisabolene, and ß-sesquiphellandrene, were found in rice film fortified with crude ginger extract.


Subject(s)
Catechols/pharmacology , Edible Films , Fatty Alcohols/pharmacology , Guaiacol/analogs & derivatives , Microwaves , Oryza/chemistry , Plant Extracts/pharmacology , Solid Phase Extraction/methods , Streptococcus mutans/drug effects , Zingiber officinale/chemistry , Catechols/isolation & purification , Drug Resistance, Bacterial , Fatty Alcohols/isolation & purification , Guaiacol/isolation & purification , Guaiacol/pharmacology , Plant Extracts/isolation & purification , Thailand
4.
Arch Oral Biol ; 129: 105210, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34293645

ABSTRACT

OBJECTIVE: This study aimed to investigate the efficacy of double antibiotics, including ciprofloxacin and metronidazole, in a new vehicle, hydroxypropyl methylcellulose (HPMC), against Enterococcus faecalis and Streptococcus gordonii grown in biofilm. DESIGN: Human mandibular premolars were prepared and divided into four groups: (i) negative control, (ii) positive control, (iii) infected with E. faecalis and S. gordonii for 21 days and intracanally medicated with double antibiotics in HPMC, and (iv) infected with E. faecalis and S. gordonii for 21 days and intracanally medicated with calcium hydroxide (UltraCal™). The efficacy of medication for 14 or 28 days was determined by bacterial cultures and RT-qPCR for absolute quantities of E. faecalis and S. gordonii cDNA and for relative mRNA expressions of pbp5 and gtfG genes. RESULTS: There were significant decreases in the mean colony forming units and mean cDNA amounts of E. faecalis and S. gordonii in group (iii) on days 14 and 28 compared to those in group (ii) (p < 0.01). However, the mean cDNA amounts of E. faecalis and S. gordonii in group (iv) were found to be significantly increased on day 28 (p < 0.05). The mRNA expression of gtfG was significantly decreased in groups (iii) and (iv) on days 14 and 28, whereas that of pbp5 was significantly increased in group (iv) on days 14 and 28 (p < 0.01). CONCLUSION: Double antibiotics in HPMC gel showed an in vitro efficacy against E. faecalis and S. gordonii grown in biofilm, suggesting its clinical application as an intracanal medicament for both primary and persistent infections.


Subject(s)
Enterococcus faecalis , Streptococcus gordonii , Anti-Bacterial Agents/pharmacology , Biofilms , Calcium Hydroxide , Dental Pulp Cavity , Humans , Hypromellose Derivatives , Root Canal Irrigants
5.
Article in English | MEDLINE | ID: mdl-33680064

ABSTRACT

Gynura divaricata (GD) is an Asian herb widely used as an alternative medicine and functional food for type 2 diabetes. Diabetic neuropathy is considered as an important complication of diabetic patients. This study focused on neuroregenerative effects of GD for use in the prevention of diabetic neuropathy. GD leaves were cut and boiled in water to mimic real-life cooking. The boiled content was filtered through white gauze and lyophilized to preserve as dried powder. Antioxidant assay was performed using DPPH assays. UHPLC-QTOF-MS/MS was employed to test for important compounds in the extract of these herbs. MTT assay was used to test for cell viability. The extracts at concentration of 250 µg/mL were tested with human gingival cell to observe the change of gene expression. The DPPH assay showed that GD water extract at the concentration of 5000 µg/mL could inhibit DPPH radical for 39.2%. The results showed that 5000 µg of GD water extract contained total phenolic content equivalent to 310.9 µg standard gallic acid. UHPLC-QTOF-MS/MS result found phenolic acids and flavonoids as the main components. Human gingival cells treated with 250 µg/mL of GD water extract for 10 days showed upregulation of some neuronal differentiation markers. Staining with Cdr3 dye confirmed the presentation of neuronal progenitors. The extract at the concentration of 250 µg/mL was also tested with apical papilla cells to screen for change of gene expression by RNA sequencing. The result also showed significant upregulation of alpha-internexin (INA). These results indicated that GD water extract might have an inductive effect for neural regeneration and could be used as functional food and supplementation for the prevention or treatment of diabetic neuropathy. This work provided the basic knowledge for further investigations into the benefits of GD for diabetic neuropathy.

6.
Arch Oral Biol ; 113: 104690, 2020 May.
Article in English | MEDLINE | ID: mdl-32155466

ABSTRACT

Streptococcus intermedius, Streptococcus mutans, and Candida albicans are harmful oral pathogens and prone to resist chemical antimicrobial agents. Active ingredients from plants are of increasing interest as an alternative. This study aims to compare antimicrobial effects of 4-allylpyrocatechol (APC) extracted from Piper betle on these oral pathogens. Minimum concentration of APC against the tested pathogens was determined using a broth microdilution assay. Killing kinetic study of APC was carried out within 24 h. Morphology of the pathogenic cells was assessed using scanning electron microscopy (SEM). Anti-biofilm was investigated using crystal violet assay and confocal laser scanning microscopy (CLSM). The results showed that the mechanism of inhibition of APC was bactericidal and fungicidal effects. APC at minimum concentration of 400 µg/mL could completely kill Streptococcus and Candida spp., however, the killing rate on S. intermedius and C. albicans was significantly faster than on S. mutans. APC inhibited biofilm formation of C. albicans more efficiently than that of the bacterial cells. Cell morphology from SEM indicated that APC caused bacterial cell membrane destruction and inhibited fungal budding or tubing formation. CLSM images confirmed the killing potential of APC and suggested that bacterial dead cells could be easier washed out than the fungal dead cells. It is concluded that APC potentially inhibits growth and biofilms of oral Streptococcus and Candida spp. in different mechanism of action and killing rate. APC can be considered as a promising agent for preventing and treating dental disorders caused by S. intermedius, S. mutans, and C. albicans.


Subject(s)
Candida albicans/drug effects , Catechols/pharmacology , Piper betle/chemistry , Streptococcus intermedius/drug effects , Streptococcus mutans/drug effects , Biofilms/drug effects , Microbial Sensitivity Tests , Phytochemicals/pharmacology
7.
Bioimpacts ; 8(2): 129-138, 2018.
Article in English | MEDLINE | ID: mdl-29977834

ABSTRACT

Introduction: Induced neural stem cells (iNSCs) have the ability of differentiation into neurons, astrocytes and oligodendrocytes. iNSCs are very useful in terms of research and treatment. The present study offers an idea that biomaterials could be one of the tools that could modulate reprogramming process in the fibroblasts. Methods: Gelatin biomaterials were fabricated into 3 types, including (i) gelatin, (ii) gelatin with 1 mg/mL hydroxyapatite, and (iii) gelatin with hydroxyapatite and pig brain. NIH/3T3 fibroblasts were cultured on each type of biomaterial for 7, 9 and 14 days. RT-PCR was performed to investigate the gene expression of the fibroblasts on biomaterials compared to the fibroblasts on tissue culture plates. PI3K/Akt signaling was performed by flow cytometry after 24 hours seeding on the biomaterials. The biomaterials were also tested with the human APCs and PDL cells. Results: The fibroblasts exhibited changes in the expression of the reprogramming factor; Klf‫4 and the neural transcription factors; NFIa, NFIb and Ptbp1 after 9 days culture. The cultivation of fibroblasts on the biomaterials for 7 days showed a higher expression of the transcription factor SOX9. The expression of epigenetic genes; Kat2a and HDAC3 were changed upon the cultivation on the biomaterials for 9 days. The fibroblasts cultured on the biomaterials showed an activation of PI3K/Akt signaling. The human APCs and human PDL cells developed mineralization process on biomaterials Conclusion: Changes in the expression of Klf4, NFIa, NFIb, Ptbp1 and SOX9 indicated that fibroblasts were differentiated into an astrocytic lineage. It is possible that the well-designed biomaterials could work as powerful tools in the reprogramming process of fibroblasts into iNSCs.

8.
Drug Discov Ther ; 12(3): 133-141, 2018.
Article in English | MEDLINE | ID: mdl-29998994

ABSTRACT

The overgrowth of certain strains of normal flora in oral cavity can cause many kinds of oral infections or diseases such as carries, periodontitis, and gingivitis. Prevention and treatment of these diseases are usually achieved by chemical antiseptics. However, these chemicals are found as negative impacts of human health hazards and accession of microbial resistance. The present study explores the potential of Piper betle extracts on inhibition of two oral pathogenic bacteria; Streptococcus mutans DMST 41283 and Streptococcus intermedius DMST 42700. P. betle demonstrated significantly higher inhibitory activity against both pathogenic strains than Acacia catechu, Camellia sinensis, Coccinia grandis, Solanum indicum, and Streblus asper. Among fractionated extracts of P. betle from several solvents, the extract from ethyl acetate (Pb-EtOAc) possessed the widest inhibition zone of 11.0 ± 0.1 and 11.3 ± 0.4 mm against both bacterial strains, respectively. Pb-EtOAc showed the same minimum inhibitory concentration of 0.5 mg/mL against both strains, whereas its minimum bactericidal concentrations were 2.0 and 0.5 mg/mL against S. mutans and S. intermedius, respectively. HPLC analysis demonstrated that the major active compound of Pb-EtOAc was 4-allylpyrocatechol. It was found that the killing kinetics of Pb-EtOAc against both test strains were time and dose dependent. Scanning electron microscopy micrographs showed the morphological changes and depletion of the tested pathogens indicating cell destruction after exposure to Pb-EtOAc. It is confirmed that Pb-EtOAc is potentially effective against both oral pathogens and might be used as natural alternative agents in prevention and treatment of oral infections caused by oral pathogenic bacteria.


Subject(s)
Piper betle , Plant Extracts/pharmacology , Streptococcus intermedius/drug effects , Streptococcus mutans/drug effects , Acacia , Camellia sinensis , Catechols/chemistry , Catechols/pharmacology , Chromatography, High Pressure Liquid , Cucurbitaceae , Dental Caries/microbiology , Gingivitis/microbiology , Humans , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Moraceae , Periodontitis/microbiology , Piper betle/chemistry , Plant Extracts/chemistry , Solanum , Streptococcus intermedius/ultrastructure , Streptococcus mutans/ultrastructure
9.
Bioimpacts ; 7(1): 13-23, 2017.
Article in English | MEDLINE | ID: mdl-28546949

ABSTRACT

Introduction: The addition of herbs into hot sesame oil could increase the oil-pulling efficiency of sesame oil. The aim of present study was to modify the proportion of herbs and sesame oil with the addition of other ingredients including menthol, camphor, and borneol and improve the medicinal properties and the scent of the oil. Methods: Macerated herbal oil was prepared by heat extraction of five species of herbs (Zingiber cassumunar, Zingiber zerumbet, Plantago major Linn, Citrus hystrix, and Amomum biflorum) with hot sesame oil. The study was performed to evaluate the anti-oxidant, anti-inflammatory, and anti-bacterial properties of this macerated herbal oil. Results: Macerated herbal oil was evaluated for antioxidant activity using DPPH and ABTS assays. It was shown that at dilution 1:2 in DMSO, the macerated herbal oil had DPPH and ABTS radical scavenging activities equal to 63% and 22%, respectively. Macerated herbal oil dilution 1:8 in DMSO demonstrated ferric reducing capacity equivalent to ascorbic acid (0.208 µM) and had reducing power equivalent to butylated hydroxytoluene (BHT) 7.41 µg/mL. MTT assay was performed using immortalized human mesenchymal stem cells (HMSCs) as a cell culture model. The result indicated that the cytotoxic concentration of the macerated herbal oil was ≥ 2.5 µL/mL in complete DMEM. Anti-inflammatory effects were evaluated using the nitrite assay and RT-PCR. It was found that the macerated herbal oil could inhibit nitrite accumulation in culture media. Change in the expression of COX-2, Nrf2, and NF-kB in RT-PCR confirmed the anti-inflammatory activity of the macerated herbal oil. Conclusion: It could be concluded that the macerated herbal oil could inhibit nitrite accumulation in culture media, which might be the inhibitory effect of the macerated herbal oil on COX-2 or Nrf2, the downstream modulator of the COX-2 pathway. Further intensive studies are needed for the optimization before bringing this macerated herbal oil into clinical application.

10.
Environ Geochem Health ; 39(4): 751-758, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27318827

ABSTRACT

Excessive fluoride consumption leads to accelerated red blood cell death and anaemia. Whether that increases the haematological alteration in subjects with haematological disorders (iron deficiency, thalassaemia, and G-6-PD deficiency) is still unclear. The fluoride in serum and urine and haematological parameters of students at Mae Tuen School (fluoride endemic area) were analysed and compared to those of students at Baan Yang Poa and Baan Mai Schools (control areas). Iron deficiency, thalassaemia, and G-6-PD deficiency were also diagnosed in these students. The students at Mae Tuen School had significantly (P < 0.001) higher levels of mean fluoride in the serum and urine than those in control areas. In both control and fluoride endemic areas, students with haematological disorders had significantly lower levels of Hb, Hct, MCV, MCH, and MCHC than those without haematological disorders. Moreover, the lowest levels of Hb, MCH, and MCHC were observed in the students with haematological disorders who live in the fluoride endemic area. Thus, the excessive fluoride consumption increased haematological alteration in subjects with iron deficiency, thalassaemia, and G-6-PD deficiency and that may increase the risk of anaemia in these subjects.


Subject(s)
Anemia, Iron-Deficiency/blood , Anemia, Iron-Deficiency/urine , Cell Death , Erythrocytes , Glucosephosphate Dehydrogenase Deficiency/blood , Glucosephosphate Dehydrogenase Deficiency/urine , Thalassemia/blood , Thalassemia/urine , Adolescent , Child , Erythrocyte Indices , Female , Fluorides/administration & dosage , Fluorides/adverse effects , Fluorides/blood , Fluorides/urine , Hematocrit , Hemoglobins/analysis , Humans , Male , Thailand , Young Adult
11.
Drug Discov Ther ; 11(6): 307-315, 2017.
Article in English | MEDLINE | ID: mdl-29332888

ABSTRACT

In the present study, antimicrobial activity of Piper betle crude ethanol extract against 4 strains of oral pathogens; Candida albicans DMST 8684, C. albicans DMST 5815, Streptococcus gordonii DMST 38731 and Streptococcus mutans DMST 18777 was compared with other medicinal plants. P. betle showed the strongest antimicrobial activity against all tested strains. Fractionated extracts of P. betle using hexane, ethyl acetate, and ethanol, respectively, were subjected to antimicrobial assay. The result revealed that the fractionated extract from ethyl acetate (F-EtOAc) possessed the strongest antimicrobial activity against all tested strains. Its inhibition zones against those pathogens were 23.00 ± 0.00, 24.33 ± 0.58, 12.50 ± 0.70 and 11.00 ± 0.00 mm, respectively and its minimum inhibitory concentrations were 0.50, 1.00, 0.50 and 1.00 mg/mL, respectively. Interestingly, the minimum concentration to completely kill those pathogens was the same for all strains and found to be 2.00 mg/mL. Killing kinetic study revealed that the activity of F-EtOAc was dose dependent. HPLC chromatograms of P. betle extracts were compared with its antimicrobial activity. An obvious peak at a retention time of 4.11 min was found to be a major component of F-EtOAc whereas it was a minor compound in the other extracts. This peak was considered to be an active compound of P. betle as it was consistent with the antimicrobial activity of F-EtOAc, the most potential extract against the tested pathogens. It is suggested that F-EtOAc is a promising extract of P. betle for inhibition of oral pathogens. Separation and structure elucidation of the active compound of this extract will be further investigated.


Subject(s)
Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Piper betle , Plant Extracts/pharmacology , Streptococcus gordonii/drug effects , Streptococcus mutans/drug effects , Acetates , Chromatography, High Pressure Liquid , Ethanol , Hexanes , Humans , Microbial Sensitivity Tests , Mouth/microbiology , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...