Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1337463, 2024.
Article in English | MEDLINE | ID: mdl-38504887

ABSTRACT

Doubled haploid (DH) technology becomes more routinely applied in maize hybrid breeding. However, some issues in haploid induction and identification persist, requiring resolution to optimize DH production. Our objective was to implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four BHI306-derived tropical × temperate inducer families. We also aimed to assess their haploid induction rate (HIR) in the F3 generation as a phenotypic response to MAS. We highlighted remarkable increases in HIR of each inducer family. Genotypes carrying qhir1 and qhir8 exhibited 1 - 3-fold higher haploid frequency than those carrying only qhir1. Additionally, the qhir1 marker was employed for verifying putative haploid seedlings at 7 days after planting. Flow cytometric analysis served as the gold standard test to assess the accuracy of the R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be integrated in multiple haploid identifications at early seedling stage succeeding pre-haploid sorting via R1-nj marker.

2.
Plant Sci ; 330: 111624, 2023 May.
Article in English | MEDLINE | ID: mdl-36737006

ABSTRACT

Stomata regulate photosynthesis and water loss. They have been an active subject of research for centuries, but our knowledge of the genetic components that regulate stomatal development in crops remains very limited in comparison to the model plant Arabidopsis thaliana. Leaf stomatal density was found to vary by over 2.5-fold across a panel of 235 rice accessions. Using GWAS, we successfully identified five different QTLs associated with stomatal density on chromosomes 2, 3, 9, and 12. Forty-two genes were identified within the haplotype blocks corresponding to these QTLs. Of these, nine genes contained haplotypes that were associated with different stomatal densities. These include a gene encoding a trehalose-6-phosphate synthase, an enzyme that has previously been associated with altered stomatal density in Arabidopsis, and genes encoding a B-BOX zinc finger family protein, a leucine-rich repeat family protein, and the 40 S ribosomal protein S3a, none of which have previously been linked to stomatal traits. We investigated further and show that a closely related B-BOX protein regulates stomatal development in Arabidopsis. The results of this study provide information on genetic associations with stomatal density in rice. The QTLs and candidate genes may be useful in future breeding programs for low or high stomatal density and, consequently, improved photosynthetic capacity, water use efficiency, or drought tolerance.


Subject(s)
Arabidopsis , Oryza , Oryza/metabolism , Genome-Wide Association Study , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Breeding , Water/metabolism
3.
Theor Appl Genet ; 136(2): 25, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36781491

ABSTRACT

KEY MESSAGE: A QTL associated with BPH resistance at the early seedling stage was identified on chromosome 3. Functional Bph14 in Rathu Heenati was associated with BPH resistance at the early seedling stage. Brown planthopper (BPH; Nilaparvata lugens Stål) is considered the most important rice pest in many Asian countries. Several BPH resistance genes have previously been identified. However, there are few reports of genes specific for BPH resistance at the early seedling stage, a crucial stage for direct-seeding cultivation. In this study, we performed a QTL-seq analysis using two bulks (20 F2 lines in each bulk) of the F2 population (n = 300) derived from a cross of Rathu Heenati (RH) × HCS-1 to identify QTL/genes associated with BPH resistance at the early seedling stage. An important QTL was identified on chromosome 3 and Bph14 was identified as a potential candidate gene based on the differences in gene expression and sequence variation when compared with the two parents. All plants in the resistant bulks possessed the functional Bph14 from RH and all plants in the susceptible bulk and HCS-1 contained a large deletion (2703 bp) in Bph14. The functional Bph14 gene of RH appears to be important for BPH resistance at the early seedling stage of rice and could be used in conjunction with other BPH resistance genes in rice breeding programs that confer resistance to BPH at the early and later growth stages.


Subject(s)
Hemiptera , Oryza , Animals , Humans , Male , Genes, Plant , Oryza/genetics , Oryza/metabolism , Plant Breeding , Seedlings/genetics
4.
Front Plant Sci ; 13: 994560, 2022.
Article in English | MEDLINE | ID: mdl-36275605

ABSTRACT

Rice is the staple food for more than half of the world's population. Iron toxicity limits rice production in several regions of the world. Breeding Fe-tolerant rice varieties is an excellent approach to address the problem of Fe toxicity. Rice responds differently to Fe toxicity at different stages. Most QTLs associated with Fe toxicity have been identified at the seedling stage, and there are very few studies on Fe toxicity across different stages. In this study, we investigated agro-morphological and physiological traits in response to Fe toxicity in a rice diversity panel at seedling, vegetative, and reproductive stages and applied GWAS to identify QTLs/genes associated with these traits. Among agro-morphological and physiological parameters, leaf bronzing score (LBS) is a key parameter for determining Fe toxicity response at all stages, and SDW could be a promising parameter at the seedling stage. A total of 29 QTLs were identified on ten chromosomes. Among them, three colocalized QTLs were identified on chromosome 5, 6, and 11. Several QTLs identified in this study overlapped with previously identified QTLs from bi-parental QTL mapping and association mapping. Two genes previously reported to be associated with iron homeostasis were identified, i.e., LOC_Os01g72370 (OsIRO2, OsbHLH056) and LOC_Os04g38570 (OsABCB14). In addition, based on gene-based haplotype analysis, LOC_Os05g16670 was identified as a candidate gene for the colocalized QTL on chromosome 5 and LOC_Os11g18320 was identified as a candidate gene for the colocalized QTL on chromosome 11. The QTLs and candidate genes identified in this study could be useful for rice breeding programs for Fe toxicity tolerance.

5.
Front Plant Sci ; 13: 781153, 2022.
Article in English | MEDLINE | ID: mdl-35574109

ABSTRACT

Agricultural crop breeding programs, particularly at the national level, typically consist of a core panel of elite breeding cultivars alongside a number of local landrace varieties (or other endemic cultivars) that provide additional sources of phenotypic and genomic variation or contribute as experimental materials (e.g., in GWAS studies). Three issues commonly arise. First, focusing primarily on core development accessions may mean that the potential contributions of landraces or other secondary accessions may be overlooked. Second, elite cultivars may accumulate deleterious alleles away from nontarget loci due to the strong effects of artificial selection. Finally, a tendency to focus solely on SNP-based methods may cause incomplete or erroneous identification of functional variants. In practice, integration of local breeding programs with findings from global database projects may be challenging. First, local GWAS experiments may only indicate useful functional variants according to the diversity of the experimental panel, while other potentially useful loci-identifiable at a global level-may remain undiscovered. Second, large-scale experiments such as GWAS may prove prohibitively costly or logistically challenging for some agencies. Here, we present a fully automated bioinformatics pipeline (riceExplorer) that can easily integrate local breeding program sequence data with international database resources, without relying on any phenotypic experimental procedure. It identifies associated functional haplotypes that may prove more robust in determining the genotypic determinants of desirable crop phenotypes. In brief, riceExplorer evaluates a global crop database (IRRI 3000 Rice Genomes) to identify haplotypes that are associated with extreme phenotypic variation at the global level and recorded in the database. It then examines which potentially useful variants are present in the local crop panel, before distinguishing between those that are already incorporated into the elite breeding accessions and those only found among secondary varieties (e.g., landraces). Results highlight the effectiveness of our pipeline, identifying potentially useful functional haplotypes across the genome that are absent from elite cultivars and found among landraces and other secondary varieties in our breeding program. riceExplorer can automatically conduct a full genome analysis and produces annotated graphical output of chromosomal maps, potential global diversity sources, and summary tables.

6.
J Fungi (Basel) ; 8(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35448566

ABSTRACT

Dirty panicle disease in coconuts (Cocos nucifera) was first observed in the KU-BEDO Coconut BioBank, Nakhon Pathom province, Thailand. The occurrence of the disease covers more than 30% of the total coconut plantation area. The symptoms include small brown to dark brown spots and discoloration of male flowers. Herein, three fungal strains were isolated from infected samples. Based on the morphological characteristics the fungal isolates, they were classified into two genera, namely, Alternaria (Al01) and Fusarium (FUO01 and FUP01). DNA sequences of internal transcribed spacer (ITS), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-α (tef1-α), and RNA polymerase II second largest subunit (rpb2) revealed Al01 as Alternaria burnsii, whereas DNA sequences of ITS, rpb2, and tef1-α identified FUO01 and FUP01 as Fusarium clavum and F. tricinctum, respectively. A pathogenicity test by the agar plug method demonstrated that these pathogens cause dirty panicle disease similar to that observed in natural infections. To the best of our knowledge, this is the first report on the novel dirty panicle disease in coconuts in Thailand or elsewhere, demonstrating that it is associated with the plant pathogenic fungi A. burnsii, F. clavum, and F. tricinctum.

7.
Sci Rep ; 12(1): 3718, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260602

ABSTRACT

Luffa is a genus of tropical and subtropical vines belonging to the Cucurbitaceae family. Sponge gourd (Luffa cylindrica) and ridge gourd (Luffa acutangula) are two important species of the genus Luffa and are good sources of human nutrition and herbal medicines. As a vegetable, aromatic luffa is more preferred by consumers than nonaromatic luffa. While the aroma trait is present in the sponge gourd, the trait is not present in the ridge gourd. In this study, we identified Luffa cylindrica's betaine aldehyde dehydrogenase (LcBADH) as a gene associated with aroma in the sponge gourd based on a de novo assembly of public transcriptome data. A single nucleotide polymorphism (SNP: A > G) was identified in exon 5 of LcBADH, causing an amino acid change from tyrosine to cysteine at position 163, which is important for the formation of the substrate binding pocket of the BADH enzyme. Based on the identified SNP, a TaqMan marker, named AroLuff, was developed and validated in 370 F2 progenies of the sponge gourd. The marker genotypes were perfectly associated with the aroma phenotypes, and the segregation ratios supported Mendelian's simple recessive inheritance. In addition, we demonstrated the use of the AroLuff marker in the introgression of LcBADH from the aromatic sponge gourd to the ridge gourd to improve aroma through interspecific hybridization. The marker proved to be useful in improving the aroma characteristics of both Luffa species.


Subject(s)
Luffa , Betaine-Aldehyde Dehydrogenase/genetics , Luffa/chemistry , Odorants , Polymorphism, Single Nucleotide , Pyrroles , Vegetables
8.
Plant Cell Rep ; 41(2): 319-335, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34837515

ABSTRACT

KEY MESSAGE: Elevated expression of nucleotide-binding and leucine-rich repeat proteins led to closer vein spacing and higher vein density in rice leaves. To feed the growing global population and mitigate the negative effects of climate change, there is a need to improve the photosynthetic capacity and efficiency of major crops such as rice to enhance grain yield potential. Alterations in internal leaf morphology and cellular architecture are needed to underpin some of these improvements. One of the targets is to generate a "Kranz-like" anatomy in leaves that includes decreased interveinal spacing close to that in C4 plant species. As C4 photosynthesis has evolved from C3 photosynthesis independently in multiple lineages, the genes required to facilitate C4 may already be present in the rice genome. The Taiwan Rice Insertional Mutants (TRIM) population offers the advantage of gain-of-function phenotype trapping, which accelerates the identification of rice gene function. In the present study, we screened the TRIM population to determine the extent to which genetic plasticity can alter vein density (VD) in rice. Close vein spacing mutant 1 (CVS1), identified from a VD screening of approximately 17,000 TRIM lines, conferred heritable high leaf VD. Increased vein number in CVS1 was confirmed to be associated with activated expression of two nucleotide-binding and leucine-rich repeat (NB-LRR) proteins. Overexpression of the two NB-LRR genes individually in rice recapitulates the high VD phenotype, due mainly to reduced interveinal mesophyll cell (M cell) number, length, bulliform cell size and thus interveinal distance. Our studies demonstrate that the trait of high VD in rice can be achieved by elevated expression of NB-LRR proteins limited to no yield penalty.


Subject(s)
Leucine-Rich Repeat Proteins/genetics , NLR Proteins/genetics , Oryza/genetics , Plant Leaves/anatomy & histology , Plant Proteins/genetics , DNA, Bacterial , Disease Resistance/genetics , Ectopic Gene Expression , Gene Expression Regulation, Plant , Leucine-Rich Repeat Proteins/metabolism , Mesophyll Cells , Mutation , NLR Proteins/metabolism , Oryza/anatomy & histology , Photosynthesis , Plant Leaves/cytology , Plant Leaves/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Seedlings/anatomy & histology , Seedlings/genetics
9.
Plants (Basel) ; 12(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36616233

ABSTRACT

Coconut (Cocos nucifera L.) is widely recognized as one of nature's most beneficial plants. Makapuno, a special type of coconut with a soft, jelly-like endosperm, is a high-value commercial coconut and an expensive delicacy with a high cost of planting material. The embryo rescue technique is a very useful tool to support mass propagation of makapuno coconut. Nevertheless, transplanting the seedlings is a challenge due to poor root development, which results in the inability of the plant to acclimatize. In this study, primary root excision was used in makapuno to observe the effects of primary root excision on lateral root development. The overall results showed that seedlings with roots excised had a significantly higher number of lateral roots, and shoot length also increased significantly. Using de novo transcriptome assembly and differential gene expression analysis, we identified 512 differentially expressed genes in the excised and intact root samples. ERF071, encoding an ethylene-responsive transcription factor, was identified as a highly expressed gene in excised roots compared to intact roots, and was considered a candidate gene associated with lateral root formation induced by root excision in makapuno coconut. This study provides insight into the mechanism and candidate genes involved in the development of lateral roots in coconut, which may be useful for the future breeding and mass propagation of makapuno coconut through tissue culture.

10.
Genes (Basel) ; 12(10)2021 10 09.
Article in English | MEDLINE | ID: mdl-34680982

ABSTRACT

Rice is one of the most important food crops in the world and is of vital importance to many countries. Various diseases caused by fungi, bacteria and viruses constantly threaten rice plants and cause yield losses. Bacterial leaf streak disease (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most devastating rice diseases. However, most modern rice varieties are susceptible to BLS. In this study, we applied the QTL-seq approach using an F2 population derived from the cross between IR62266 and Homcholasit (HSC) to rapidly identify the quantitative trait loci (QTL) that confers resistance to BLS caused by a Thai Xoc isolate, SP7-5. The results showed that a single genomic region at the beginning of chromosome 5 was highly associated with resistance to BLS. The gene xa5 was considered a potential candidate gene in this region since most associated single nucleotide polymorphisms (SNPs) were within this gene. A Kompetitive Allele-Specific PCR (KASP) marker was developed based on two consecutive functional SNPs in xa5 and validated in six F2 populations inoculated with another Thai Xoc isolate, 2NY2-2. The phenotypic variance explained by this marker (PVE) ranged from 59.04% to 70.84% in the six populations. These findings indicate that xa5 is a viable candidate gene for BLS resistance and may help in breeding programs for BLS resistance.


Subject(s)
Disease Resistance/genetics , Oryza/microbiology , Plant Diseases/genetics , Quantitative Trait Loci , Xanthomonas/pathogenicity , Alleles , Chromosomes, Plant , Genes, Plant , Genetic Markers , Oryza/genetics , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Reproducibility of Results
11.
Plants (Basel) ; 10(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207135

ABSTRACT

Sweetness is an economically important eating quality trait for sweet-corn breeding. To investigate the genetic control of the sweetness trait, we conducted a genome-wide association study (GWAS) in an association panel consisting of 250 sweet corn and waxy corn inbred and recombinant inbred lines (RILs), together with the genotypes obtained from the high-density 600K maize genotyping single-nucleotide polymorphism (SNP) array. GWAS results identified 12 significantly associated SNPs on chromosomes 3, 4, 5, and 7. The most associated SNP, AX_91849634, was found on chromosome 3 with a highly significant p-value of ≤1.53 × 10-14. The candidate gene identified within the linkage disequilibrium (LD) of this marker was shrunken2 (Zm00001d044129; sh2), which encodes ADP-glucose pyrophosphorylase (AGPase), a 60 kDa subunit enzyme that affects starch metabolism in the maize endosperm. Several SNP markers specific to variants in sh2 were developed and validated. According to the validation in a set of 81 inbred, RIL, and popular corn varieties, marker Sh2_rs844805326, which was developed on the basis of the SNP at the position 154 of exon 1, was highly efficient in classifying sh2-based sweet corn from other types of corn. This functional marker is extremely useful for marker-assisted breeding in sh2-sweet corn improvement and marketable seed production.

12.
Front Plant Sci ; 12: 677839, 2021.
Article in English | MEDLINE | ID: mdl-34149777

ABSTRACT

Rice (Oryza sativa) is a water-intensive crop, and like other plants uses stomata to balance CO2 uptake with water-loss. To identify agronomic traits related to rice stomatal complexes, an anatomical screen of 64 Thai and 100 global rice cultivars was undertaken. Epidermal outgrowths called papillae were identified on the stomatal subsidiary cells of all cultivars. These were also detected on eight other species of the Oryza genus but not on the stomata of any other plant species we surveyed. Our rice screen identified two cultivars that had "mega-papillae" that were so large or abundant that their stomatal pores were partially occluded; Kalubala Vee had extra-large papillae, and Dharia had approximately twice the normal number of papillae. These were most accentuated on the flag leaves, but mega-papillae were also detectable on earlier forming leaves. Energy dispersive X-Ray spectrometry revealed that silicon is the major component of stomatal papillae. We studied the potential function(s) of mega-papillae by assessing gas exchange and pathogen infection rates. Under saturating light conditions, mega-papillae bearing cultivars had reduced stomatal conductance and their stomata were slower to close and re-open, but photosynthetic assimilation was not significantly affected. Assessment of an F3 hybrid population treated with Xanthomonas oryzae pv. oryzicola indicated that subsidiary cell mega-papillae may aid in preventing bacterial leaf streak infection. Our results highlight stomatal mega-papillae as a novel rice trait that influences gas exchange, stomatal dynamics, and defense against stomatal pathogens which we propose could benefit the performance of future rice crops.

13.
Plants (Basel) ; 10(4)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808467

ABSTRACT

Rice (Oryza sativa L.) is one of the most important food crops, providing food for nearly half of the world population. Rice grain yields are affected by temperature changes. Temperature stresses, both low and high, affect male reproductive development, resulting in yield reduction. Thermosensitive genic male sterility (TGMS) rice is sterile at high temperature and fertile at low temperature conditions, facilitating hybrid production, and is a good model to study effects of temperatures on male development. Semithin sections of the anthers of a TGMS rice line under low (fertile) and high (sterile) temperature conditions showed differences starting from the dyad stage, suggesting that genes involved in male development play a role during postmeiotic microspore development. Using RNA sequencing (RNA-Seq), transcriptional profiling of TGMS rice panicles at the dyad stage revealed 232 genes showing differential expression (DEGs) in a sterile, compared to a fertile, condition. Using qRT-PCR to study expression of 20 selected DEGs using panicles of TGMS and wild type rice plants grown under low and high temperature conditions, revealed that six out of the 20 selected genes may be unique to TGMS, while the other 14 genes showed common responses to temperatures in both TGMS and wild-type rice plants. The results presented here would be useful for further investigation into molecular mechanisms controlling TGMS and rice responses to temperature alteration.

14.
Plants (Basel) ; 10(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802191

ABSTRACT

Bacterial leaf blight (BLB) is a serious disease affecting global rice agriculture caused by Xanthomonas oryzae pv. oryzae (Xoo). Most resistant rice lines are dependent on single genes that are vulnerable to resistance breakdown caused by pathogen mutation. Here we describe a genome-wide association study of 222 predominantly Thai rice accessions assayed by phenotypic screening against 20 Xoo isolates. Loci corresponding to BLB resistance were detected using >142,000 SNPs. We identified 147 genes according to employed significance thresholds across chromosomes 1-6, 8, 9 and 11. Moreover, 127 of identified genes are located on chromosomal regions outside estimated Linkage Disequilibrium influences of known resistance genes, potentially indicating novel BLB resistance markers. However, significantly associated SNPs only occurred across a maximum of six Xoo isolates indicating that the development of broad-spectrum Xoo strain varieties may prove challenging. Analyses indicated a range of gene functions likely underpinning BLB resistance. In accordance with previous studies of accession panels focusing on indica varieties, our germplasm displays large numbers of SNPs associated with resistance. Despite encouraging data suggesting that many loci contribute to resistance, our findings corroborate previous inferences that multi-strain resistant varieties may not be easily realised in breeding programs without resorting to multi-locus strategies.

15.
Plants (Basel) ; 9(12)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260392

ABSTRACT

Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most devastating diseases in rice production areas, especially in humid tropical and subtropical zones throughout Asia and worldwide. A genome-wide association study (GWAS) analysis conducted on a collection of 236 diverse rice accessions, mainly indica varieties, identified 12 quantitative trait loci (QTLs) on chromosomes 1, 2, 3, 4, 5, 8, 9 and 11, conferring resistance to five representative isolates of Thai Xoc. Of these, five QTLs conferred resistance to more than one Xoc isolates. Two QTLs, qBLS5.1 and qBLS2.3, were considered promising QTLs for broad-spectrum resistance to BLS. The xa5 gene was proposed as a potential candidate gene for qBLS5.1 and three genes, encoding pectinesterase inhibitor (OsPEI), eukaryotic zinc-binding protein (OsRAR1), and NDP epimerase function, were proposed as candidate genes for qBLS2.3. Results from this study provide an insight into the potential QTLs and candidate genes for BLS resistance in rice. The recessive xa5 gene is suggested as a potential candidate for strong influence on broad-spectrum resistance and as a focal target in rice breeding programs for BLS resistance.

16.
Hortic Res ; 7: 156, 2020.
Article in English | MEDLINE | ID: mdl-33082963

ABSTRACT

Coconut (Cocos nucifera L.) is an important economic crop in tropical countries. However, the lack of a complete reference genome and the limitations of usable DNA markers hinder genomic studies and the molecular breeding of coconut. Here, we present the results of simple sequence repeat (SSR) mining from a high-throughput genotyping-by-sequencing (GBS) study of a collection of 38 coconut accessions. A total of 22,748 SSRs with di-, tri-, tetra-, penta- and hexanucleotide repeats of five or more were identified, 2451 of which were defined as polymorphic loci based on locus clustering in 38 coconut accessions, and 315 loci were suitable for the development of SSR markers. One hundred loci were selected, and primer pairs for each SSR locus were designed and validated in 40 coconut accessions. The analysis of 74 polymorphic markers identified between 2 and 9 alleles per locus, with an average of 3.01 alleles. The assessment of the genetic diversity and genetic relationships among the 40 coconut varieties based on the analysis of population structure, principal coordinate analysis (PCoA), and phylogenetic tree analysis using the 74 polymorphic SSR markers revealed three main groups of coconuts in Thailand. The identified SSR loci and SSR markers developed in this study will be useful for the study of coconut diversity and molecular breeding. The SSR mining approach used in this study could be applied to other plant species with a complex genome regardless of the availability of reference genome.

17.
Plant Cell Rep ; 39(1): 149-162, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31570974

ABSTRACT

KEY MESSAGE: The QTL-seq approach was used to identify QTLs for spikelet fertility under heat stress in rice. QTLs were detected on chromosomes 1, 2 and 3. Rice is a staple food of more than half of the global population. Rice production is increasingly affected by extreme environmental fluctuations caused by climate change. Increasing temperatures that exceed the optimum temperature adversely affect rice growth and development, especially during reproductive stages. Heat stress during the reproductive stages has a large effect on spikelet fertility; hence, the yield decreases. To sustain rice yields under increasing temperatures, the development of rice varieties for heat tolerance is necessary. In this study, we applied the QTL-seq approach to rapidly identify QTLs for spikelet fertility under heat stress (air temperature of 40-45 °C) based on two DNA pools, each consisting of 25 individual plants that exhibited a heat-tolerant or heat-sensitive phenotype from an F2 population of a cross between M9962 (heat tolerant) and Sinlek (heat sensitive). Three QTLs, qSF1, qSF2 and qSF3, were detected on chromosomes 1, 2 and 3, respectively, according to the highest contrasting SNP index between the two bulks. The QTLs identified in this study were found to overlap or were linked to QTLs previously identified in other crosses using conventional QTL mapping. A few highly abundant and anther-specific genes that contain nonsynonymous variants were identified within the QTLs and were proposed to be potential candidate genes. These genes could be targets in rice breeding programs for heat tolerance.


Subject(s)
Flowers/genetics , Hot Temperature/adverse effects , Oryza/genetics , Thermotolerance/genetics , Chromosome Mapping , Fertility/genetics , Flowers/growth & development , Genomics , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Stress, Physiological , Whole Genome Sequencing
18.
Sci Rep ; 9(1): 8328, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31171826

ABSTRACT

Grain quality is one of the main targets that rice breeders focus on to improve elite rice varieties. Several characteristics are considered when determine rice grain quality, such as aroma, amylose content (AC), gelatinization temperature (GT) and, especially, lengthwise grain elongation (GE). GE is a desirable feature in premium rice of high quality, such as India and Pakistan' Basmati. Inheritance of GE in rice has not been clearly elucidated due to its complex and inconsistent pattern. In this study, we identified QTLs for GE in rice using bulk-segregant analysis (BSA) and whole-genome sequencing based on an F2 population segregated for GE as well as AC and GT. We identified two QTLs on chromosome 6, qGE6.1 and qGE6.2, and another QTL on chromosome 4, qGE4.1. qGE6.1 and qGE6.2 were located near starch synthase IIa (SSIIa) and starch branching enzyme III (SBEIII), respectively, and qGE4.1 was located near starch branching enzyme IIa (SBEIIa). qGE6.1 was considered to be the major QTL for GE based on this population, and SSIIa was suggested to be the best candidate gene associated with the GE trait. The results of this study may be useful for breeding rice with increased grain elongation and different starch properties.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/genetics , Oryza/enzymology , Oryza/genetics , Quantitative Trait Loci , Starch Synthase/genetics , Amylose , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , Edible Grain/genetics , Genes, Plant , Genetic Markers , Genotype , India , Pakistan , Phenotype , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Temperature
19.
Genomics ; 111(4): 661-668, 2019 07.
Article in English | MEDLINE | ID: mdl-29775784

ABSTRACT

Magnaporthe oryzae is a fungal pathogen causing blast disease in many plant species. In this study, seventy three isolates of M. oryzae collected from rice (Oryza sativa) in 1996-2014 were genotyped using a genotyping-by-sequencing approach to detect genetic variation. An association study was performed to identify single nucleotide polymorphisms (SNPs) associated with virulence genes using 831 selected SNP and infection phenotypes on local and improved rice varieties. Population structure analysis revealed eight subpopulations. The division into eight groups was not related to the degree of virulence. Association mapping showed five SNPs associated with fungal virulence on chromosome 1, 2, 3, 4 and 7. The SNP on chromosome 1 was associated with virulence against RD6-Pi7 and IRBL7-M which might be linked to the previously reported AvrPi7.


Subject(s)
Fungal Proteins/genetics , Genome, Fungal , Magnaporthe/genetics , Virulence Factors/genetics , Fungal Proteins/metabolism , Magnaporthe/pathogenicity , Oryza/microbiology , Polymorphism, Single Nucleotide , Virulence Factors/metabolism
20.
Theor Appl Genet ; 130(12): 2557-2565, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28887587

ABSTRACT

KEY MESSAGE: The gene conferring a "pandan-like" aroma of winter melon was identified. The sequence variation (804-bp deletion) found in the gene was used as the target for functional marker development. Winter melon (Benincasa hispida), a member of the Cucurbitaceae family, is a commonly consumed vegetable in Asian countries that is popular for its nutritional and medicinal value. A "pandan-like" aroma, which is economically important in crops including rice and soybean, is rarely found in most commercial varieties of winter melon, but is present in some landraces. This aroma is a value-added potential trait in breeding winter melon with a higher economic value. In this study, we confirmed that the aroma of winter melon is due to the potent volatile compound 2-acetyl-1-pyrroline (2AP) as previously identified in other plants. Based on an analysis of public transcriptome data, BhAMADH encoding an aminoaldehyde dehydrogenase (AMADH) was identified as a candidate gene conferring aroma of winter melon. A sequence comparison of BhAMADH between the aromatic and non-aromatic accessions revealed an 804-bp deletion encompassing exons 11-13 in the aromatic accession. The deletion caused several premature stop codons and could result in a truncated protein with a length of only 208 amino acids compared with 503 amino acids in the normal protein. A functional marker was successfully developed based on the 804-bp deletion and validated in 237 F2 progenies. A perfect association of the marker genotypes and aroma phenotypes indicates that BhAMADH is the major gene conferring the aroma. The recently developed functional marker could be efficiently used in breeding programs for the aroma trait in winter melon.


Subject(s)
Aldehyde Dehydrogenase/genetics , Cucurbitaceae/genetics , Odorants , Pyrroles/chemistry , Sequence Deletion , Crops, Agricultural/enzymology , Crops, Agricultural/genetics , Cucurbitaceae/enzymology , Genes, Plant , Genetic Markers , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...