Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Adv Med Oncol ; 14: 17588359221138386, 2022.
Article in English | MEDLINE | ID: mdl-36506107

ABSTRACT

Background: A significant proportion of patients with non-small-cell lung cancer (NSCLC) do not respond to immune checkpoint inhibitors (ICIs). Since metabolic reprogramming with increased glycolysis is a hallmark of cancer and is involved in immune evasion, we used 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) to evaluate the baseline glycolytic parameters of patients with advanced NSCLC submitted to ICIs, and assessed their predictive value. Methods: 18F-FDG PET/CT results in the 3 months before ICIs treatment were included. Maximum standardized uptake values, whole metabolic tumor volume (wMTV), and whole-body total lesion glycolysis (wTLG) were evaluated. Cutoff values for high or low glycolytic categories were determined using receiver-operating characteristic curves. Progression-free survival (PFS) and overall survival (OS) were evaluated. Patients with a complete response and a matching group with resistance to ICIs underwent immunohistochemistry analysis. An unsupervised k-means clustering model integrating programmed cell death ligand 1 (PD-L1) expression, glycolytic parameters, and ICIs therapy was performed. Results: In all, 98 patients were included. Lower baseline 18F-FDG PET/CT parameters were associated with responses to ICIs. Patients with low wMTV or wTLG had improved PFS and OS. High wTLG, strong tumor expression of glucose transporter-1, and lack of responses were significantly associated. Patients with low glycolytic parameters benefited from ICIs, regardless of chemotherapy. Conversely, those with high parameters benefited from the addition of chemotherapy. Patients with higher wTLG and lower PD-L1 were associated with progression and worse survival to ICIs monotherapy. Conclusions: Glycolytic metabolic profiles established through baseline 18F-FDG PET/CT are useful biomarkers for evaluating ICI therapy in advanced NSCLC.

2.
Cancer Immunol Res ; 10(11): 1299-1308, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36083496

ABSTRACT

Cytotoxic agents synergize with immune checkpoint inhibitors and improve outcomes for patients with several cancer types. Nonetheless, a parallel increase in the incidence of dose-limiting side effects, such as peripheral neuropathy, is often observed. Here, we investigated the role of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis in the modulation of paclitaxel-induced neuropathic pain. We found that human and mouse neural tissues, including the dorsal root ganglion (DRG), expressed basal levels of PD-1 and PD-L1. During the development of paclitaxel-induced neuropathy, an increase in PD-L1 expression was observed in macrophages from the DRG. This effect depended on Toll-like receptor 4 activation by paclitaxel. Furthermore, PD-L1 inhibited pain behavior triggered by paclitaxel or formalin in mice, suggesting that PD-1/PD-L1 signaling attenuates peripheral neuropathy development. Consistent with this, we observed that the combined use of anti-PD-L1 plus paclitaxel increased mechanical allodynia and chronic neuropathy development induced by single agents. This effect was associated with higher expression of inflammatory markers (Tnf, Il6, and Cx3cr1) in peripheral nervous tissue. Together, these results suggest that PD-1/PD-L1 inhibitors enhance paclitaxel-induced neuropathic pain by suppressing PD-1/PD-L1 antinociceptive signaling.


Subject(s)
Antineoplastic Agents, Phytogenic , Neuralgia , Rats , Humans , Mice , Animals , Programmed Cell Death 1 Receptor , Antineoplastic Agents, Phytogenic/adverse effects , Rats, Sprague-Dawley , Neuralgia/chemically induced , Neuralgia/metabolism , Paclitaxel , Analgesics/adverse effects
3.
Crit Care ; 26(1): 206, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35799268

ABSTRACT

BACKGROUND: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. OBJECTIVES: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19. METHODS: We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection. RESULTS: We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage. CONCLUSION: These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.


Subject(s)
COVID-19 Drug Treatment , Extracellular Traps , Animals , Disulfiram/metabolism , Extracellular Traps/metabolism , Mice , Neutrophils/metabolism , SARS-CoV-2
4.
Front Immunol ; 13: 816642, 2022.
Article in English | MEDLINE | ID: mdl-35572596

ABSTRACT

Reinvigorating the antitumor immune response using immune checkpoint inhibitors (ICIs) has revolutionized the treatment of several malignancies. However, extended use of ICIs has resulted in a cancer-specific response. In tumors considered to be less immunogenic, the response rates were low or null. To overcome resistance and improve the beneficial effects of ICIs, novel strategies focused on ICI-combined therapies have been tested. In particular, poly ADP-ribose polymerase inhibitors (PARPi) are a class of agents with potential for ICI combined therapy. PARPi impairs single-strand break DNA repair; this mechanism involves synthetic lethality in tumor cells with deficient homologous recombination. More recently, novel evidence indicated that PAPRi has the potential to modulate the antitumor immune response by activating antigen-presenting cells, infiltrating effector lymphocytes, and upregulating programmed death ligand-1 in tumors. This review covers the current advances in the immune effects of PARPi, explores the potential rationale for combined therapy with ICIs, and discusses ongoing clinical trials.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , DNA Repair , Homologous Recombination , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/genetics , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
5.
Front Immunol ; 13: 826577, 2022.
Article in English | MEDLINE | ID: mdl-35211121

ABSTRACT

Cancer cells harbor genomic instability due to accumulated DNA damage, one of the cancer hallmarks. At least five major DNA Damage Repair (DDR) pathways are recognized to repair DNA damages during different stages of the cell cycle, comprehending base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination (HR), and non-homologous end joining (NHEJ). The unprecedented benefits achieved with immunological checkpoint inhibitors (ICIs) in tumors with mismatch repair deficiency (dMMR) have prompted efforts to extend this efficacy to tumors with HR deficiency (HRD), which are greatly sensitive to chemotherapy or PARP inhibitors, and also considered highly immunogenic. However, an in-depth understanding of HRD's molecular underpinnings has pointed to essential singularities that might impact ICIs sensitivity. Here we address the main molecular aspects of HRD that underlie a differential profile of efficacy and resistance to the treatment with ICIs compared to other DDR deficiencies.


Subject(s)
Homologous Recombination/genetics , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Cell Cycle , DNA Damage/genetics , DNA End-Joining Repair/genetics , DNA Mismatch Repair/genetics , DNA Repair/genetics , Humans , Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
6.
J Infect Dis ; 225(3): 531-541, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34379757

ABSTRACT

BACKGROUND: Although the literature shows that an increase in both the number and suppressive function of CD4+forkhead box P3 (FOXP3)+ T-regulatory cells (Tregs) during sepsis contributes to an immunosuppressed state, little is known about the identity of these cells. METHODS: Using the sepsis mouse model of cecal ligation and puncture (CLP), we analyzed the frequency and molecular signature of the T-cell immunoglobulin and ITIM domain (TIGIT)+ and TIGIT- Treg subsets, using flow cytometry and quantitative polymerase chain reaction. In addition, ST2-/- and signal transducer and activator of transcription 6 (STAT6)-/- mice were submitted to CLP or recombinant interleukin 33 (IL-33) treatment to investigate the mechanism whereby TIGIT+ Tregs differentiate during sepsis. RESULTS: Sepsis was marked by the sustained expansion of the highly suppressive TIGIT+ Treg subset, which expresses Helios, neuropilin 1, and high levels of Tnfrsf18 and Pdcd1 at 15 days after CLP. The increase in TIGIT+ Tregs was accompanied by higher susceptibility to nosocomial bacteria challenge, suggesting their association with post sepsis immunosuppression. Mechanistically, we found that the ST2 deletion abrogated the expansion of the TIGIT+ Treg subset during sepsis. Furthermore, treatment with recombinant IL-33 resulted in the expansion of TIGIT+ Tregs depending on the STAT6 and M2 macrophages. CONCLUSIONS: These findings demonstrated that only the TIGIT+ Tregs remain stably expanded at the late phase of sepsis. Moreover, the expansion of TIGIT+ Tregs is dependent on the IL-33/ST2/STAT6/M2 macrophage axis.


Subject(s)
Sepsis , T-Lymphocytes, Regulatory , Animals , Forkhead Transcription Factors/genetics , Immunosuppression Therapy , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Mice , Receptors, Immunologic/genetics
7.
Blood ; 138(25): 2702-2713, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34407544

ABSTRACT

Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.


Subject(s)
Extracellular Traps/genetics , Gene Deletion , Intracellular Signaling Peptides and Proteins/genetics , Multiple Organ Failure/genetics , Phosphate-Binding Proteins/genetics , Sepsis/genetics , Acetaldehyde Dehydrogenase Inhibitors/therapeutic use , Adoptive Transfer , Aged , Animals , Cells, Cultured , Disulfiram/therapeutic use , Female , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Male , Mice, Inbred C57BL , Middle Aged , Multiple Organ Failure/pathology , Multiple Organ Failure/therapy , Phosphate-Binding Proteins/antagonists & inhibitors , Sepsis/pathology , Sepsis/therapy
8.
Cancers (Basel) ; 13(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804927

ABSTRACT

Colorectal cancer (CRC) is a disease with high incidence and mortality. Colonoscopy is a gold standard among tests used for CRC traceability. However, serious complications, such as colon perforation, may occur. Non-invasive diagnostic procedures are an unmet need. We aimed to identify a plasma microRNA (miRNA) signature for CRC detection. Plasma samples were obtained from subjects (n = 109) at different stages of colorectal carcinogenesis. The patients were stratified into a non-cancer (27 healthy volunteers, 17 patients with hyperplastic polyps, 24 with adenomas), and a cancer group (20 CRC and 21 metastatic CRC). miRNAs (381) were screened by TaqMan Low-Density Array. A classifier based on four differentially expressed miRNAs (miR-28-3p, let-7e-5p, miR-106a-5p, and miR-542-5p) was able to discriminate cancer versus non-cancer cases. The overexpression of these miRNAs was confirmed by RT-qPCR, and a cross-study validation step was implemented using eight data series retrieved from Gene Expression Omnibus (GEO). In addition, another external data validation using CRC surgical specimens from The Cancer Genome Atlas (TCGA) was carried out. The predictive model's performance in the validation set was 76.5% accuracy, 59.4% sensitivity, and 86.8% specificity (area under the curve, AUC = 0.716). The employment of our model in the independent publicly available datasets confirmed a good discrimination performance in five of eight datasets (median AUC = 0.823). Applying this algorithm to the TCGA cohort, we found 99.5% accuracy, 99.7% sensitivity, and 90.9% specificity (AUC = 0.998) when the model was applied to solid colorectal tissues. Overall, we suggest a novel signature of four circulating miRNAs, i.e., miR-28-3p, let-7e-5p, miR-106a-5p, and miR-542-5p, as a predictive tool for the detection of CRC.

9.
Asia Pac J Clin Oncol ; 14(2): e138-e144, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28766916

ABSTRACT

AIM: Inflammatory breast cancer (IBC) is the most aggressive form of locally advanced breast cancer. The signs of inflammation such as hyperemia and hyperthermia might suggest the possible participation of inflammatory mediators. This study investigates stromal and tumor expression of nuclear factor-kappa B (NF-κB) and interleukin-18 (IL-18) in samples obtained from IBC and noninflammatory locally advanced breast cancer (LABC) and the influence of these markers on patients' prognosis. METHODS: Demographic data, tumor molecular characteristics and overall survival in both groups were also assessed. Furthermore, in this study, we evaluated the expression of IL-18 and p50 nuclear fraction of NF-κB by immunohistochemistry in specimens from IBC and LABC (T4b). RESULTS: We observed that 24.6% of women were diagnosed with IBC up to age 40. In addition, the patients with IBC showed a lower overall survival when compared to LABC. In regard to molecular markers, ER+ , C-erbB2- or triple negative IBC patients showed a significantly reduced overall survival. In addition, a higher IL-18 immunostaining in stroma of IBC and LABC was observed in comparison with tumor cells, but stromal immunoexpression was similar between IBC and LABC. Besides, IL-18 positivity seemed be related with a better clinical response to neoadjuvant chemotherapy. However, NF-κB expression was identical in both groups. CONCLUSION: The IL-18 is present in tumor stroma of IBC and LABC and seems to be associated with the complete response to neoadjuvant chemotherapy.


Subject(s)
Inflammatory Breast Neoplasms/genetics , Interleukin-18/metabolism , Adult , Aged , Female , Humans , Inflammatory Breast Neoplasms/drug therapy , Inflammatory Breast Neoplasms/mortality , Middle Aged , Prognosis , Retrospective Studies , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...