Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Int J Mol Med ; 54(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963035

ABSTRACT

Globally, non­small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre­preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP­loaded PNA­modified liposomes (CDDP­PNA­Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP­PNA­Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through in vitro studies. Additionally, the capacity of PNA modification to augment the targeted anti­tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)­loaded PNA­modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP­PNA­Lip resulted in a 2.65­fold enhancement of tumour suppression in vivo compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand­modified liposomes may significantly improve its tumour­targeting capabilities, providing valuable insights for clinical drug development.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cisplatin , Liposomes , Lung Neoplasms , Peanut Agglutinin , Cisplatin/pharmacology , Cisplatin/administration & dosage , Liposomes/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Animals , Peanut Agglutinin/chemistry , Cell Line, Tumor , Mice , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Mice, Nude , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Mice, Inbred BALB C , Cell Movement/drug effects , Female , Drug Delivery Systems/methods
2.
Se Pu ; 42(6): 590-598, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845520

ABSTRACT

Fluorescent whitening agents (FWAs) are dyes that emit visible blue or blue-purple fluorescence upon ultraviolet-light absorption. Taking advantage of light complementarity, FWAs can compensate for the yellow color of many substances to achieve a whitening effect; thus, they are used extensively in various applications. FWAs are generally stable, but their presence in the environment can lead to pollution and accumulation in the body through the food chain. Recent studies have revealed that some types of FWAs, such as coumarin-based FWAs, may exhibit photo-induced mutagenic effects that can trigger allergic reactions in humans and even pose carcinogenic risks. Hence, the development of an accurate and highly sensitive method for detecting FWAs in food-related samples is a crucial endeavor. Owing to the high polarity and structural similarity of FWAs, the accurate determination of these substances in complex food samples requires an analytical method that offers both efficient separation and sensitive detection. Capillary electrophoresis (CE) exhibits essential features such as high separation efficiency, short analysis times, very small sample injection requirements, minimal use of organic solvents, and simple operation. Thus, it is often used as an effective alternative to liquid chromatographic techniques. Over the past few decades, electrospray ionization mass spectrometry (ESI-MS) has been utilized as a highly sensitive and accurate detection method in numerous chemical analytical fields because it enables the analysis of molecular structures. By combining the high separation efficiency of CE with the high sensitivity of ESI-MS, a powerful tool for identifying and quantifying trace amounts of FWAs in food samples may be obtained. In this study, we present a method based on sheathless CE coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS) for the simultaneous detection of six trace FWAs in flour. In the proposed method, the CE separation device is directly coupled to the mass spectrometer through a sheathless interface without the need for a sheath liquid for electric contact, thereby avoiding the dilution of the analytes and improving detection sensitivity. Various conditions that could affect extraction recovery, separation efficiency, and detection sensitivity were evaluated and optimized. The FWAs were effectively extracted from the sample matrix with reduced matrix effects by ultrasonic-assisted extraction at a temperature of 30 ℃ for 20 min using CHCl3-MeOH (3∶2, v/v) as the extraction solvent. The extract was centrifuged, dried under N2, and reconstituted in CHCl3-MeOH (1∶4, v/v) for subsequent analysis. During the detection process, the CE device was coupled to the ESI-MS/MS instrument via a highly sensitive porous spray needle, which served as the sheathless electrospray interface. The target FWAs were scanned in positive-ion mode (ESI+) to ensure the stability and intensity of the obtained signals. Additionally, multiple-reaction monitoring (MRM) mode and MS/MS analysis were used to simultaneously quantify the six targets with high selectivity. The developed sheathless CE-ESI-MS/MS method detected the FWAs with high sensitivity over wide linear ranges with low method limits of detection (0.04-0.67 ng/g). The recoveries of the six target FWAs at three spiked levels were between 77.5% and 97.2%, with good interday (RSD≤11.5%) and intraday (RSD≤10.2%) precision. Analyses of the six target FWAs in eight commercial flour samples were performed using this method, and four positive samples were identified. These results demonstrate that the proposed CE-ESI-MS/MS method is a promising strategy for the determination of trace FWAs in complex food sample matrices with efficient separation and high sensitivity.


Subject(s)
Electrophoresis, Capillary , Flour , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Electrophoresis, Capillary/methods , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Flour/analysis , Fluorescent Dyes/chemistry , Food Contamination/analysis
3.
Molecules ; 29(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38930818

ABSTRACT

This study prepared sulfonated Camellia oleifera shell biochar using Camellia oleifera shell agricultural waste as a carbon source, and evaluated its performance as a catalyst for preparing biodiesel. The biochar obtained from carbonizing Camellia oleifera shells at 500 °C for 2 h serves as the carbon skeleton, and then the biochar is sulfonated with chlorosulfonic acid. The sulfonic acid groups are mainly grafted onto the surface of Camellia oleifera shell biochar through covalent bonding to obtain sulfonic acid type biochar catalysts. The catalysts were characterized by Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Nitrogen adsorption-desorption Brunel-Emmett-Taylor Theory (BET), and Fourier-transform infrared spectroscopy (FT-IR). The acid density of the sulfonated Camellia oleifera fruit shell biochar catalyst is 2.86 mmol/g, and the specific surface area is 2.67 m2/g, indicating high catalytic activity. The optimal reaction conditions are 4 wt% catalyst with a 6:1 alcohol to oil ratio. After esterification at 70 °C for 2 h, the yield of biodiesel was 91.4%. Under the optimal reaction conditions, after four repeated uses of the catalyst, the yield of biodiesel still reached 90%. Therefore, sulfonated Camellia oleifera shell biochar is a low-cost, green, non-homogeneous catalyst with great potential for biodiesel production by esterification reaction in future development.


Subject(s)
Biofuels , Camellia , Charcoal , Camellia/chemistry , Charcoal/chemistry , Catalysis , Sulfonic Acids/chemistry , Spectroscopy, Fourier Transform Infrared , Esterification , X-Ray Diffraction
4.
PLoS One ; 19(5): e0298572, 2024.
Article in English | MEDLINE | ID: mdl-38758947

ABSTRACT

Aiming at the problem of load increase in distribution network and low satisfaction of vehicle owners caused by disorderly charging of electric vehicles, an optimal scheduling model of electric vehicles considering the comprehensive satisfaction of vehicle owners is proposed. In this model, the dynamic electricity price and charging and discharging state of electric vehicles are taken as decision variables, and the income of electric vehicle charging stations, the comprehensive satisfaction of vehicle owners considering economic benefits and the load fluctuation of electric vehicles are taken as optimization objectives. The improved NSGA-III algorithm (DJM-NSGA-III) based on dynamic opposition-based learning strategy, Jaya algorithm and Manhattan distance is used to solve the problems of low initial population quality, easy to fall into local optimal solution and ignoring potential optimal solution when NSGA-III algorithm is used to solve the multi-objective and high-dimensional scheduling model. The experimental results show that the proposed method can improve the owner's satisfaction while improving the income of the charging station, effectively alleviate the conflict of interest between the two, and maintain the safe and stable operation of the distribution network.


Subject(s)
Algorithms , Electricity , Automobiles , Humans , Models, Theoretical
5.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793692

ABSTRACT

Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.


Subject(s)
Ducks , Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Ducks/virology , Flavivirus/pathogenicity , Flavivirus/immunology , Flavivirus/genetics , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Flavivirus Infections/transmission , Genome, Viral , Poultry Diseases/virology , Poultry Diseases/transmission , Viral Vaccines/immunology , Farmers , Antibodies, Viral/blood , Humans
6.
Vet Microbiol ; 292: 110047, 2024 May.
Article in English | MEDLINE | ID: mdl-38471429

ABSTRACT

Riemerella anatipestifer is one of the important bacterial pathogens that threaten the waterfowl farming industry. In this study, 157 suspected R. anatipestifer strains were isolated from diseased ducks and geese from seven regions of China during 2019-2020, and identified using multiple polymerase chain reaction (PCR). Antimicrobial susceptibility tests and whole-genome sequence (WGS) analysis were then performed for comparative analysis of antimicrobial resistance phenotypes and genotypes. The results showed that these strains were susceptible to florfenicol, ceftriaxone, spectinomycin, sulfafurazole and cefepime, but resistant to kanamycin, amikacin, gentamicin, and streptomycin, exhibiting multiple antimicrobial resistance phenotypes. WGS analysis revealed a wide distribution of genotypes among the 157 strains with no apparent regional pattern. Through next-generation sequencing analysis of antimicrobial resistance genes, a total of 88 resistance genes were identified. Of them, 19 tetracycline resistance genes were most commonly found, followed by 15 efflux pump resistance genes, 11 glycopeptide resistance genes and seven macrolide resistance genes. The 157 R. anatipestifer strains contained 42-55 resistance genes each, with the strains carrying 47 different resistance genes being the most abundant. By comparing the antimicrobial resistance phenotype and genotype, it was observed that a high correlation between them for most antimicrobial resistance properties was detected, except for a difference in aminoglycoside resistance phenotype and genotype. In conclusion, 157 R. anatipestifer strains exhibited severe multiple antimicrobial resistance phenotypes and genotypes, emphasizing the need for improved antimicrobial usage guidelines. The wide distribution and diverse types of resistance genes among these strains provide a foundation for studying novel mechanisms of antimicrobial resistance.


Subject(s)
Flavobacteriaceae Infections , Poultry Diseases , Riemerella , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Macrolides , Riemerella/genetics , Ducks/microbiology , Genotype , Phenotype , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology
7.
Molecules ; 29(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38474517

ABSTRACT

Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Phosphorus/chemistry , Wastewater , Adsorption , Nitrogen/chemistry , Ecosystem , Charcoal/chemistry , Water , Water Pollutants, Chemical/chemistry
8.
Vet Res ; 55(1): 12, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279181

ABSTRACT

Duck circovirus (DuCV) is a small, nonenveloped, single-stranded DNA virus with immunosuppressive effects on ducks that leads to slow growth and elevated mortality following mixed infections. Its infection manifests as feather loss, slow growth, swelling of respiratory tissue, and damage to immune organs in ducks. Although single infections with DuCV do not cause noticeable clinical symptoms, its ability to compromise the immune system and facilitate infections caused by other pathogens poses a serious threat to duck farming. Given the prevalence of this disease and the increasing infection rates in recent years, which have resulted in significant economic losses in duck farming and related sectors, research and control of DuCV infection have become especially important. The aim of this review is to provide a summary of the current understanding of DuCV, serving as a reference for subsequent research and effective control of the virus. We focus mainly on the genetics and molecular biology, epidemiology, clinical symptoms, and pathology of DuCV. Additionally, topics such as the isolation and culture of the virus, vaccines and antiviral therapies, diagnostics, and preventative measures are discussed.


Subject(s)
Circoviridae Infections , Circovirus , Poultry Diseases , Animals , Circovirus/genetics , Circoviridae Infections/epidemiology , Circoviridae Infections/veterinary , Circoviridae Infections/prevention & control
9.
Vet Microbiol ; 288: 109951, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101078

ABSTRACT

Duck Tembusu virus (DTMUV) infection poses a serious threat to ducks, chickens, and geese, causing a range of detrimental effects, including reduced egg production, growth retardation, and even death. These consequences lead to substantial economic losses for the Chinese poultry industry. Although it is established that various viral infections can trigger activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway, the precise role and mechanisms underlying p38 MAPK activation in DTMUV infection remain poorly understood. To address this knowledge gap, we conducted a study to investigate whether the replication of DTMUV necessitates the activation of p38 MAPK. We found that DTMUV infection stimulates activation of the MKK3/6-p38 MAPK pathway, and the activation of p38 MAPK increases with viral titer. Subsequently, the use of the small molecule inhibitor SB203580 significantly reduced DTMUV replication by inhibiting p38 MAPK activity. Furthermore, downregulation of p38 MAPK protein expression by siRNA also inhibited DTMUV replication, whereas transient transfection of p38 MAPK protein promoted DTMUV replication. Interestingly, we found that the DTMUV capsid protein activates p38 MAPK, and there is interaction between DTMUV capsid and p38 MAPK. Finally, we found that DTMUV infection induces elevated mRNA expression of IFN-α, IFN-ß, IFN-γ, IL-1ß, IL-6, and IL-12, which is associated with p38 MAPK activity. These results indicated that virus hijacking of p38 activation is a crucial event for DTMUV replication, and that pharmacological blockade of p38 activation represents a potential anti-DTMUV strategy.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Ducks , Flavivirus Infections/veterinary , Chickens , Flavivirus/genetics , Virus Replication , Signal Transduction , Capsid Proteins , p38 Mitogen-Activated Protein Kinases/genetics
10.
Plants (Basel) ; 12(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37896106

ABSTRACT

High-temperature stress is the main environmental stress that restricts the growth and development of woody plants, and the growth and development of woody plants are affected by high-temperature stress. The influence of high temperature on woody plants varies with the degree and duration of the high temperature and the species of woody plants. Woody plants have the mechanism of adapting to high temperature, and the mechanism for activating tolerance in woody plants mainly counteracts the biochemical and physiological changes induced by stress by regulating osmotic adjustment substances, antioxidant enzyme activities and transcription control factors. Under high-temperature stress, woody plants ability to perceive high-temperature stimuli and initiate the appropriate physiological, biochemical and genomic changes is the key to determining the survival of woody plants. The gene expression induced by high-temperature stress also greatly improves tolerance. Changes in the morphological structure, physiology, biochemistry and genomics of woody plants are usually used as indicators of high-temperature tolerance. In this paper, the effects of high-temperature stress on seed germination, plant morphology and anatomical structure characteristics, physiological and biochemical indicators, genomics and other aspects of woody plants are reviewed, which provides a reference for the study of the heat-tolerance mechanism of woody plants.

11.
Microb Pathog ; 184: 106341, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37704061

ABSTRACT

Gosling gout has posed a serious threat to the development of the China's goose industry since the outbreak in mainland China in 2016; goose astrovirus (GAstV) was identified as the culprit pathogen. Two genotypes of this virus have been identified: GAstV-1 and GAstV-2, of which GAstV-2 is the main epidemic strain. Our current understanding of the pathogenic mechanisms of GAstV-2 remains limited. To assess pathogenicity, 1-day-old goslings were inoculated with the GAstV-2 YC20 strain via the subcutaneous, intranasal, and oral infection routes. All the goslings showed typical gout symptoms, with those in the oral infection group exhibiting earlier and more severe clinical symptoms, the highest mortality rate, and greatest weight loss. The blood biochemical indicators, viral loads in cloacal swabs and all representative tissues, and serum antibody titers of all infection groups increased significantly, and no significant differences in these parameters were observed among the three infection groups. Histopathological studies showed that the livers, kidneys, and spleens were the main damaged organs, and the pathological changes in the oral group were more severe than those in the other groups. Further analysis revealed that hepatic sinuses narrowed or became occluded as early as 1 day post-inoculation; urate deposition occurred in the renal tubules at 2 days post-inoculation (dpi), followed by necrosis of renal tubular epithelial cells; and lymphocytic infiltration appeared in the splenic tissue at 5 dpi. These results further our understanding of the pathogenic mechanisms of GAstV-2 and provide a reference for future studies.


Subject(s)
Astroviridae Infections , Avastrovirus , Gout , Poultry Diseases , Animals , Geese , Astroviridae Infections/veterinary , Virulence , Avastrovirus/genetics , Gout/veterinary , Phylogeny
12.
Biosens Bioelectron ; 239: 115613, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37607447

ABSTRACT

We present a novel dual-mode DNA-walker based optical fiber biosensor (DMDW-Opt biosensor) for sensitive assay of micro-RNAs in bio-samples. In the sensor system, we develop a new strategy for the cascade amplification, DNA-walker/rolling cycle amplification (RCA), by the use of the residue track of the walker. The strategy can significantly improve the response of the sensor and avoid any tedious operation procedure. Dual-mode readouts, i.e., fluorescence and chemiluminescence, are measured independently without interfering with each other to achieve reliable and accurate analysis. Optical fibers with the surface modified by gold nanoparticles are utilized as the support for fabrication of the sensor, which would be benefit for developing miniaturized and portable sensing devices. The performance of the proposed method is evaluated by using micro-RNAs (MiR-155 and MiR-21) as the analytical target. The method is successfully applied for accurate determination of micoRNAs in human serum and MCF-7 cells. Our method can perform sensitive assays of MiR-155 with limit-of-detection as low as 97.72 fM and 11.22 fM, MiR-21 with limit-of-detection as low as 107.15 fM and 8.32 fM for the fluorescence- and the chemiluminescence-readout respectively, and the biosensor exhibits excellent specificity, reproducibility and storage stability, indicating its valuable potential applications for sensing trace-amount targets in complicated real samples.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , MicroRNAs , Humans , Gold , Optical Fibers , Reproducibility of Results , DNA , MicroRNAs/genetics
13.
Front Chem ; 11: 1211989, 2023.
Article in English | MEDLINE | ID: mdl-37408555

ABSTRACT

The innovative adsorbents known as the Metal-organic Framework (MOFs) had a high specific surface area, various structural types, and good chemical stability. MOFs have been produced through hydrothermal, mechanochemical, microwave-assisted, gelation, and other synthesis methods, and the solvothermal process is one of them that researchers frequently utilize. The UiO materials have a more comprehensive application potential than different subtypes of MOFs among the numerous MOFs that have been synthesized. The synthesis of MOFs and their composites, as well as the adsorption characteristics of UiO materials in the adsorption of various heavy metal ions, have all been examined and summarized in this study.

14.
J Hypertens ; 41(9): 1411-1419, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37334543

ABSTRACT

BACKGROUND: The brachial-ankle pulse-wave velocity (baPWV) is regarded as the gold standard in the evaluation of arterial stiffness. Its prognostic significance for major adverse cardiovascular events (MACE) has been demonstrated. However, the factors influencing the association between baPWV and MACE risk have not been determined. In this study, we investigated the association of baPWV and MACE risk and whether it is affected by the risk factors for different cardiovascular diseases (CVDs). METHODS: This was a prospective cohort study that initially enrolled 6850 participants from 12 communities in Beijing. The participants were divided into three subgroups according to their baPWV values. The primary outcome was the first occurrence of MACE, defined as hospitalization from cardiovascular diseases, first occurrence of a nonfatal myocardial infarction, or nonfatal stroke. Cox proportional hazards regression and restricted cubic spline analyses were used to examine the association between baPWV and MACE. The effect of CVD risk factors on the relationship between baPWV and MACE was explored in subgroup analyses. RESULTS: The final study population consisted of 5719 participants. During a median follow-up of 34.73 months, MACE occurred in 169 participants. The restricted cubic spline analysis indicated a positive linear relationship between baPWV and MACE risk. After adjustment for cardiovascular risk factors, the hazard ratio (HR) for MACE risk per SD increase in baPWV was 1.272 [95% confidence interval (CI): 1.149-1.407, P  < 0.001], and the HR for MACE in the high-baPWV vs. the low-baPWV group was 1.965 (95% CI: 1.296-2.979, P  = 0.001). Adding baPWV to the conventional cardiovascular risk factors significantly improved the model's prediction performance and the net reclassification (NRI) [NRI: 0.379 (95% CI: 0.072-0.710), P  = 0.025] in MACE discrimination. However, in the subgroup analysis, two CVD risk factors, stable coronary heart disease and hypertension, showed significant interaction effects ( Pinteraction both < 0.05). This result indicated that the effect of CVD risk factors must be taken into account when assessing the relationship between baPWV and MACE. CONCLUSION: baPWV is a potential marker to improve the identification of MACE risk in the general population. A positive linear correlation was firstly determined between baPWV and MACE risk, but it may not be valid in participants with stable coronary heart disease and hypertension.


Subject(s)
Cardiovascular Diseases , Hypertension , Myocardial Infarction , Vascular Stiffness , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Prospective Studies , Ankle , Ankle Brachial Index , Risk Factors , Pulse Wave Analysis
15.
Chin Med J (Engl) ; 136(20): 2468-2475, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37265382

ABSTRACT

BACKGROUND: The hemoglobin glycation index (HGI) was developed to quantify glucose metabolism and individual differences and proved to be a robust measure of individual glycosylated hemoglobin (HbA1c) bias. Here, we aimed to explore the relationship between different HGIs and the risk of 5-year major adverse cardiovascular events (MACEs) by performing a large multicenter cohort study in China. METHODS: A total of 9791 subjects from the Risk Evaluation of Cancers in Chinese Diabetic Individuals: a Longitudinal Study (the REACTION study) were divided into five subgroups (Q1-Q5) with the HGI quantiles (≤5th, >5th and ≤33.3th, >33.3th and ≤66.7th, >66.7th and ≤95th, and >95th percentile). A multivariate logistic regression model constructed by the restricted cubic spline method was used to evaluate the relationship between the HGI and the 5-year MACE risk. Subgroup analysis between the HGI and covariates were explored to detect differences among the five subgroups. RESULTS: The total 5-year MACE rate in the nationwide cohort was 6.87% (673/9791). Restricted cubic spline analysis suggested a U-shaped correlation between the HGI values and MACE risk after adjustment for cardiovascular risk factors ( χ2 = 29.5, P <0.001). After adjustment for potential confounders, subjects with HGIs ≤-0.75 or >0.82 showed odds ratios (ORs) for MACE of 1.471 (95% confidence interval [CI], 1.027-2.069) and 2.222 (95% CI, 1.641-3.026) compared to subjects with HGIs of >-0.75 and ≤-0.20. In the subgroup with non-coronary heart disease, the risk of MACE was significantly higher in subjects with HGIs ≤-0.75 (OR, 1.540 [1.039-2.234]; P = 0.027) and >0.82 (OR, 2.022 [1.392-2.890]; P <0.001) compared to those with HGIs of ≤-0.75 or >0.82 after adjustment for potential confounders. CONCLUSIONS: We found a U-shaped correlation between the HGI values and the risk of 5-year MACE. Both low and high HGIs were associated with an increased risk of MACE. Therefore, the HGI may predict the 5-year MACE risk.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Cohort Studies , Longitudinal Studies , Diabetes Mellitus, Type 2/diagnosis , Maillard Reaction , Glycated Hemoglobin
16.
Front Endocrinol (Lausanne) ; 14: 1148662, 2023.
Article in English | MEDLINE | ID: mdl-37056676

ABSTRACT

Background: Kidney disease is related to visceral obesity. As a new indicator of obesity, body roundness index (BRI) has not been fully revealed with kidney disease. This study's objective is to assess the relationship between estimated glomerular filtration rate (eGFR) and BRI among the Chinese population. Methods: This study enrolled 36,784 members over the age of 40, they were from 7 centers in China by using a random sampling method. BRI was computed using height and waist circumference, eGFR ≤ 90 mL/min/1.73 m2 was considered to indicate low eGFR. To lessen bias, propensity score matching was employed, multiple logistic regression models were utilized to examine the connection between low eGFR and BRI. Results: The age, diabetes and coronary heart disease rates, fasting blood glucose, and triglycerides were all greater in participants with low eGFR. The BRI quartile was still positively connected with low eGFR after controlling for confounding variables, according to multivariate logistic regression analysis. (OR [95%CI] Q2:1.052 [1.021-1.091], OR [95%CI] Q3:1.189 [1.062-1.284], OR [95%CI] Q4:1.283 [1.181-1.394], P trend < 0.001). Stratified research revealed that the elders, women, habitual smokers, and those with a history of diabetes or hypertension experienced the connection between BRI level and low eGFR. According to ROC, BRI was able to detect low eGFR more accurately. Conclusion: Low eGFR in the Chinese community is positively connected with BRI, which has the potential to be used as an effective indicator for screening kidney disease to identify high-risk groups and take appropriate measures to prevent subsequent complications.


Subject(s)
East Asian People , Glomerular Filtration Rate , Somatotypes , Aged , Female , Humans , Cross-Sectional Studies , Diabetes Mellitus , Obesity/complications , Adiposity
17.
Front Chem ; 11: 1135193, 2023.
Article in English | MEDLINE | ID: mdl-37007055

ABSTRACT

With the acceleration of industrialization and urbanization, global water resources have been polluted. Among the water pollutants, heavy metals have caused great harm to the environment and organisms. When the concentration of Cu2+ in water exceeds the standard, the intake of the human body will mainly damage the nervous system. We use MOF materials with high chemical stability, specific surface area, adsorption, and other unique properties to adsorb Cu2+. MOF-67 was prepared with various solvents, and a stronger magnetic response MOF-67 with the largest surface area and best crystal form were selected. It quickly adsorbs low-concentration Cu2+ in water to purify water quality. At the same time, it can be recovered promptly through an external magnetic field to avoid secondary pollution, which conforms to the concept of green environmental protection. When the initial concentration of Cu2+ is 50 mg/L for 30 min, the adsorption rate reaches 93.4%. The magnetic adsorbent can be reused three times.

18.
Front Endocrinol (Lausanne) ; 14: 1081520, 2023.
Article in English | MEDLINE | ID: mdl-36909319

ABSTRACT

Purpose: The hemoglobin glycation index (HGI) quantifies the mismatch between glycated hemoglobin A1c and average glycemia among individuals. Currently, it is unknown the potential role of HGI in exhaustively evaluating the progression of glucose metabolism/the risk of developing diabetes mellitus. Therefore, this study aimed to investigate the association between HGI and the risk of incident diabetes. Methods: A total of 7,345 participants aged at least 40 years and without diabetes were divided into three groups according to the tertile of their baseline HGI level and followed for a median of 3.24 years to track new-onset diabetes. Using multivariate Cox regression analyses, we explored the association between the HGI, both categorized and continuous, and incident diabetes. Results: During follow-up, 742 subjects (263 males and 479 females) developed diabetes mellitus. Higher HGI was associated with an increased risk of diabetes, even when adjusted for confounding factors, and every standard deviation increase in HGI was associated with a significant risk increase of 30.6% for diabetes (hazard ratio 1.306, 95% confidence interval 1.232-1.384). Conclusions: Participants with a higher HGI were at a higher risk of future diabetes, irrespective of their glycemic conditions. Consequently, HGI may be employed to identify individuals at high risk for diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Hemoglobin C , Female , Humans , Male , Blood Glucose/analysis , Cohort Studies , Diabetes Mellitus, Type 2/blood , Hemoglobin C/analogs & derivatives , Maillard Reaction , Adult , Middle Aged , Aged
19.
Anal Chim Acta ; 1239: 340750, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36628776

ABSTRACT

An aptamer affinity based microextraction column is developed to be directly in-line coupled to capillary electrophoresis-mass spectrometry (CE-MS) for analyzing mycotoxins in food samples. Single-stranded DNA aptamers for selective recognition of aflatoxin B1 (AFB1) and ochratoxin A (OTA) targets are co-immobilized via covalent bonds on the surface of the inlet end of a capillary, which is pre-modified with three-dimensional porous layer and gold nanoparticles to enhance the specific surface area and loading capacity. The outlet of the capillary is designed as a porous tip to serve as the spray source for injection to the mass spectrometry. All the necessary processes for pretreatment and analysis of a sample are accomplished in one injection, including aptamer affinity-based microextraction, CE separation and MS detection of analytes. AFB1 and OTA are simultaneously determined in a wide linear range with sample consumption of only 1 µL and the limit-of-detection as low as 1 pg/mL. The microextraction column exhibits excellent repeatability and stability, which can be used over 45 runs within a month with CE separation efficiency and only MS intensity slightly decreased. Mycotoxins in three kinds of cereal based infant foods are accurately analyzed using the proposed method. The study provides a robust and universal approach that would have potential applications in a variety of analytical fields based on selective molecular recognition coupling to CE-MS analysis.


Subject(s)
Aptamers, Nucleotide , Metal Nanoparticles , Mycotoxins , Humans , Porosity , Gold/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Electrophoresis, Capillary/methods , Mass Spectrometry , Mycotoxins/analysis , Aflatoxin B1/analysis
20.
J Virol Methods ; 310: 114612, 2022 12.
Article in English | MEDLINE | ID: mdl-36084767

ABSTRACT

Goose astrovirus (GAstV) is a highly infectious pathogen that causes gout in goslings (<15 old) with typical symptoms of white urate disposition on the surface of the visceral organs and articular cavity, and a high mortality rate up to 50 %. To establish a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay for the rapid detection of the two GastV genotypes(GAstV-1 and GAstV-2), two pairs of primers and a pair of matching TaqMan probes were designed based on conserved regions of the ORF1b gene. The established duplex rRT-PCR assay showed no cross-reactivity with 10 other common waterfowl pathogens. The minimum detection limit was 10 copies/reaction for both GAstV-1 and GAstV-2. To validate the assay, 36 cloacal swabs from experimentally infected goslings and 33 field clinical samples were tested. The assay results of the experimentally infected goslings matched the infection scheme. The positive rates of GAstV-1 and GAstV-2 in the field clinical samples were 36.36 % and 54.55 %, respectively, and the co-infection rate of the two viruses was 21.21 % based on the duplex rRT-PCR assay. In conclusion, the established assay represents a specific, sensitive, and convenient tool for detecting GAstV-1, GAstV-2, and their co-infections, and for conducting epidemiological surveys.


Subject(s)
Avastrovirus , Geese , Animals , Reverse Transcription , Uric Acid , Avastrovirus/genetics , Real-Time Polymerase Chain Reaction/methods , Genotype , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...