Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 7(11): e2300678, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37526322

ABSTRACT

In addition to inhibiting persistent inflammation, phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is known as an important therapeutic target for alleviating rheumatoid arthritis (RA) symptoms. Modulation of PTEN gene expression in synovial tissue using messenger RNA (mRNA) is a promising approach to combat RA. However, mRNA therapeutics are often hampered by unsatisfactory stability and inefficient localization in synovial tissue. In this study, a genetically engineered biomimetic membrane-coated mRNA (MR@P-mPTEN) carrier that effectively delivers mRNA-PTEN (mPTEN) directly to the RA joint is presented. By overexpressing tumor necrosis factor (TNF-α) receptors on macrophage biomimetic membranes via plasmid transfection, decoys that reduce inflammatory pathway activation are prepared for TNF-α. The resulting construct, MR@P-mPTEN, shows good stability and RA targeting based on in vivo fluorescence imaging. It is also found that MR@P-mPTEN competitively binds TNF-α and activates the PTEN pathway in vitro and in vivo, thereby inhibiting synovitis and joint damage. Clinical micro-computed tomography and histological analyses confirm the treatment effects. These results suggest that the genetically engineered biomimetic therapeutic platform MR@P-mPTEN both inhibits pro-inflammatory cytokines and upregulates PTEN protein expression to alleviate RA damage, providing a new a new combination strategy for RA treatment.


Subject(s)
Arthritis, Rheumatoid , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/therapeutic use , RNA, Messenger/genetics , Biomimetics , X-Ray Microtomography , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/drug therapy
2.
J Orthop Translat ; 40: 49-57, 2023 May.
Article in English | MEDLINE | ID: mdl-37346290

ABSTRACT

Objective: The purpose of this work is to investigate how the Rho family of GTPases A (RhoA) mediates the pathogenesis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). Methods: The expression of RhoA in the synovial tissues of RA and Healthy people (Control) was detected using immunohistochemistry methods. The expression of RhoA and hypoxia-inducible factor-1α (HIF-1α) is inhibited by small interfering RNAs (siRNAs). The inhibition effect on RA-FLS migration was further investigated. The protein expression level of HIF-1α, RhoA, focal adhesion kinase (FAK), and myosin light chain (MLC) was also analysed using western blotting (WB). DBA1 mice were immunised with the mixture of bovine type II collagen and Freund's adjuvant to establish collagen induced arthritis (CIA) mouse model. Lip-siRhoA is administered through joint injection every two days. Micro-computed tomography (micro-CT) was used to detect mouse ankle joint destruction and evaluate the bone loss of the periarticular side. Destruction of the ankle articular cartilage was tested by histology. Expressions of P-RhoA, P-FAK and P-MLC in the ankle joint was detected by immunohistochemistry assay. Results: The expression level of RhoA in the synovial tissues of RA patients was significantly higher than that in control group. Hypoxia was able to up-regulate the expression of RhoA. Whereas, HIF-1α siRNA (siHIF-1α) could down-regulate the expression of RhoA. Additionally, both of siHIF-1α and RhoA siRNA (siRhoA) delivered by liposome (Lip-siHIF-1α and Lip-siRhoA) were found to suppress FAK and MLC phosphorylation in vitro. In CIA mouse model, Lip-siRhoA was demonstrated to ameliorate the destruction of ankle joint and reduce the severity of ankle joint cartilage damage by micro-CT and histological staining, respectively. Therefore, inhibition of FLS cell migration can protect articular bone from destruction. Furthermore, the expression of P-RhoA, P-FAK and P-MLC was evaluated and found to be down-regulated by Lip-siRhoA in vivo. Conclusion: The results demonstrated that under hypoxic environment, HIF-1α dependent RhoA pathway played an important role on cytoskeleton remodelling and RA-FLS migration. Through down-regulating RhoA expression, it could effectively treat RA in vitro and in vivo. The translational potential of this article: Our study provides new evidence for the potential clinical application of RhoA as a candidate for the treatment of RA.

3.
BMC Pulm Med ; 23(1): 63, 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36774456

ABSTRACT

Cuprotosis is a novel and unique form of cell death that is of great value in a variety of cancers. However, the prognostic role of cuprotosis-related genes (CRGs) in lung cancer remains undetermined. We compared the expression profile of CRGs in lung adenocarcinoma (LUAD) patients, revealing the genetic alterations and inter-gene correlations of CRGs. Based on 13 CRGs, LUAD patients could be well differentiated into two molecular subgroups, and the differentially expressed genes (DEGs) in these molecular subtypes were identified. Furthermore, 10 cuprotosis pattern-related DEGs with a significant prognostic value were obtained for constructing a prognostic model. Through validation in an external validation set, the prognostic model based on the CRGs-risk score showed the robust and effective predictive ability and served as an independent prognostic indicator for LUAD patients. Therefore, combining the CRGs-risk score with multiple factors such as clinicopathological characteristics, a quantitative nomogram was developed to predict the survival and prognosis of LUAD patients, improving the clinical application value of the CRGs-risk score. In the low CRGs-risk score group, the related immune cell infiltration was increased and the immune function was activated in LUAD patients. This study may add to the knowledge of CRGs in LUAD, partly contribute to evaluating the prognosis of LUAD patients, and provide direction for the development of targeted therapy and immunotherapy.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Prognosis , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Nomograms , Cell Death
SELECTION OF CITATIONS
SEARCH DETAIL
...