Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Biotechnol J ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497586

ABSTRACT

Adzuki bean (Vigna angularis) is an important legume crop cultivated in over 30 countries worldwide. We developed a high-quality chromosome-level reference genome of adzuki bean cultivar Jingnong6 by combining PacBio Sequel long-read sequencing with short-read and Hi-C technologies. The assembled genome covers 97.8% of the adzuki bean genome with a contig N50 of approximately 16 Mb and a total of 32 738 protein-coding genes. We also generated a comprehensive genome variation map of adzuki bean by whole-genome resequencing (WGRS) of 322 diverse adzuki beans accessions including both wild and cultivated. Furthermore, we have conducted comparative genomics and a genome-wide association study (GWAS) on key agricultural traits to investigate the evolution and domestication. GWAS identified several candidate genes, including VaCycA3;1, VaHB15, VaANR1 and VaBm, that exhibited significant associations with domestication traits. Furthermore, we conducted functional analyses on the roles of VaANR1 and VaBm in regulating seed coat colour. We provided evidence for the highest genetic diversity of wild adzuki (Vigna angularis var. nipponensis) in China with the presence of the most original wild adzuki bean, and the occurrence of domestication process facilitating transition from wild to cultigen. The present study elucidates the genetic basis of adzuki bean domestication traits and provides crucial genomic resources to support future breeding efforts in adzuki bean.

2.
Genet Sel Evol ; 54(1): 62, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104777

ABSTRACT

BACKGROUND: The genetic mechanisms that underlie phenotypic differentiation in breeding animals have important implications in evolutionary biology and agriculture. However, the contribution of cis-regulatory variants to pig phenotypes is poorly understood. Therefore, our aim was to elucidate the molecular mechanisms by which non-coding variants cause phenotypic differences in pigs by combining evolutionary biology analyses and functional genomics. RESULTS: We obtained a high-resolution phased chromosome-scale reference genome with a contig N50 of 18.03 Mb for the Luchuan pig breed (a representative eastern breed) and profiled potential selective sweeps in eastern and western pigs by resequencing the genomes of 234 pigs. Multi-tissue transcriptome and chromatin accessibility analyses of these regions suggest that tissue-specific selection pressure is mediated by promoters and distal cis-regulatory elements. Promoter variants that are associated with increased expression of the lysozyme (LYZ) gene in the small intestine might enhance the immunity of the gastrointestinal tract and roughage tolerance in pigs. In skeletal muscle, an enhancer-modulating single-nucleotide polymorphism that is associated with up-regulation of the expression of the troponin C1, slow skeletal and cardiac type (TNNC1) gene might increase the proportion of slow muscle fibers and affect meat quality. CONCLUSIONS: Our work sheds light on the molecular mechanisms by which non-coding variants shape phenotypic differences in pigs and provides valuable resources and novel perspectives to dissect the role of gene regulatory evolution in animal domestication and breeding.


Subject(s)
Genome , Genomics , Animals , Evolution, Molecular , Phenotype , Sequence Analysis, DNA , Swine/genetics
3.
Protein Pept Lett ; 27(5): 411-418, 2020.
Article in English | MEDLINE | ID: mdl-31544687

ABSTRACT

BACKGROUND: microRNAs (miRNAs) are a small, endogenous non-coding RNAs that are involved in post-transcriptional gene regulation of many biological processes, including embryo implantation and placental development. In our previous study, miR-146a-5p was found expressed higher in the serum exosomes of pregnant sows than non-pregnant. The research on miR-146a-5p has been mainly related to human diseases, but there are few studies on its effects on the reproduction of sows in early pregnancy. OBJECTIVE: In this article, our motivation is to study the role of miR-146a-5p in the early pregnancy of sows on the cell proliferetion and apoptosis by targeting SMAD3 and SMAD4. METHODS: Bioinformatics software was used to identify the target genes of miR-146a-5p. The wildtype and mutant-type recombinant plasmids of dual-luciferase reporter with 3'-UTR of Smad3 or 3'- UTR of Smad4 were constructed, and co-transfected in porcine kidney cell (PK-15 cell) with miR- 146a-5p mimic, mimic-NC(M-NC), inhibitor and inhibitor-NC(IN-NC), then dual-luciferase activity analysis, qRT-PCR and Western blot were performed to verify the target genes. After the transfection of BeWo choriocarcinoma cell (BeWo cell) with miR-146a-5p mimic, M-NC, inhibitor and IN-NC, the mRNA expression of Caspase-3, BAX and Bcl-2 was measured using qRT-PCR, and the cell proliferation was measured using CCK-8 kit. RESULTS: The luciferase, mRNA and protein expression of Smad3 in PK-15 cells treated by Smad3- 3'-UTR-W co-transfected with miR-146a-5p mimic were significantly lower than that with miR- 146a-5p M-NC, and the results of Smad4 were similar to Smad3, but the protein expression had a trend to lower in mimic group. The expression level of Bcl-2 in the miR-146a-5p mimic group was significantly lower than that in the miR-146a-5p M-NC group, but the expression pattern of Caspase-3 was just opposite. The mimic of miR-146a-5p reduced the proliferation of BeWo cells, however the inhibitor increased. CONCLUSION: Smad3 and Smad4 are the direct target genes of miR-146a-5p. The expression of Smad3 and Smad4 were affected by the mimic and inhibitor of miR-146a-5p. miR-146a-5p affects cell apoptosis and proliferation by regulating their target genes. This study provided new data to understand the regulation mechanism of early pregnancy in sows.


Subject(s)
MicroRNAs/metabolism , Smad3 Protein/metabolism , Smad4 Protein/metabolism , Animals , Apoptosis , Caspase 3/genetics , Caspase 3/metabolism , Cell Line , Cell Proliferation , Exosomes/metabolism , Gene Expression Regulation , Humans , Luciferases/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , Swine , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...