Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Plant J ; 114(6): 1425-1442, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36951178

ABSTRACT

Redox homeostasis in plant cells is critical for maintaining normal growth and development because reactive oxygen species (ROS) can function as signaling molecules or toxic compounds. However, how plants fine-tune redox homeostasis during natural or stress-induced senescence remains unclear. Cut roses (Rosa hybrida), an economically important ornamental product worldwide, often undergo stress-induced precocious senescence at the post-harvest bud stage. Here, we identified RhPLATZ9, an age- and dehydration-induced PLATZ (plant AT-rich sequence and zinc-binding) protein, and determined that it functions as a transcriptional repressor in rose flowers during senescence. We also showed that RhWRKY33a regulates RhPLATZ9 expression during flower senescence. RhPLATZ9-silenced flowers and RhWRKY33a-silenced flowers showed accelerated senescence, with higher ROS contents than the control. By contrast, overexpression of RhWRKY33a or RhPLATZ9 delayed flower senescence, and overexpression in rose calli showed lower ROS accumulation than the control. RNA-sequencing analysis revealed that apoplastic NADPH oxidase genes (RhRbohs) were enriched among the upregulated differentially expressed genes in RhPLATZ9-silenced flowers compared to wild-type flowers. Yeast one-hybrid assays, electrophoretic mobility shift assays, dual luciferase assays and chromatin immunoprecipitation quantitative PCR confirmed that the RhRbohD gene is a direct target of RhPLATZ9. These findings suggest that the RhWRKY33a-RhPLATZ9-RhRbohD regulatory module acts as a brake to help maintain ROS homeostasis in petals and thus antagonize age- and stress-induced precocious senescence in rose flowers.


Subject(s)
Rosa , Reactive Oxygen Species/metabolism , Rosa/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Flowers , Gene Expression Regulation, Plant/genetics
2.
Gels ; 9(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36826287

ABSTRACT

Dendritic cells (DCs), the most potent antigen-presenting cells, are necessary for the effective activation of naïve T cells. DCs encounter numerous microenvironments with different biophysical properties, such as stiffness and viscoelasticity. Considering the emerging importance of mechanical cues for DC function, it is essential to understand the impacts of these cues on DC function in a physiological or pathological context. Engineered hydrogels have gained interest for the exploration of the impacts of biophysical matrix cues on DC functions, owing to their extracellular-matrix-mimetic properties, such as high water content, a sponge-like pore structure, and tunable mechanical properties. In this review, the introduction of gelation mechanisms of hydrogels is first summarized. Then, recent advances in the substantial effects of developing hydrogels on DC function are highlighted, and the potential molecular mechanisms are subsequently discussed. Finally, persisting questions and future perspectives are presented.

SELECTION OF CITATIONS
SEARCH DETAIL