Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 21(14)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34300445

ABSTRACT

Constant light power operation of an ultraviolet (UV) LED based on portable low-cost instrumentation and a monolithically integrated monitoring photodiode (MPD) has been reported for the first time. UV light irradiation has become one of the essential measures for disinfection and sterilization. Monitoring and maintaining a specified light power level is important to meet the criteria of sterilization. We built a module composed of a monolithically integrated UV LED and MPD, a transimpedance amplifier, an Arduino Uno card, a digital-to-analog converter and a Bluetooth transceiver. An Android App that we wrote remotely controlled the UV LED module via Bluetooth. The Arduino Uno card was programmed to receive demands from the smartphone, sent a driving voltage to the LED and returned the present MPD voltage to the smartphone. A feedback loop was used to adjust the LED voltage for maintaining a constant light output. We successfully demonstrated the functioning of remote control of the App, and the resultant UV LED measured power remained the same as the setting power. This setup can also be applied to visible or white LEDs for controlling/maintaining mixed light's chromaticity coordinates or color temperature. With such controlling and internet capability, custom profiling and maintenance of precision lighting remotely would be possible.


Subject(s)
Disinfection , Smartphone , Lighting , Ultraviolet Rays
2.
ACS Appl Mater Interfaces ; 13(1): 1152-1157, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33350805

ABSTRACT

Rapid detection of the handiness of chiral molecules is an important topic for pharmaceutical industries because chiral drugs with opposing handiness sometimes exhibit unwanted side effects. In this research, a rapid optical method is proposed to determine the handiness of the chiral drug "Thalidomide". The platform is a large array of three-dimensional (3D) twisted metamaterials fabricated with a novel method by combining nanospherical-lens lithography (NLL) and hole-mask lithography (HML). The fabrication is high-throughput and the twisted metamaterials cover a large area. Strong circular dichroism (CD) response is observed in the near-infrared (NIR) region, which enables the chiral detection to be performed by a low-cost and portable spectroscope system. The proposed nanofabrication method significantly improves the capabilities of NLL and HML, which can be quickly adapted to fabricate various periodic 3D metamaterials. In addition, the results of this research pave the road for the rapid penetration of nanophotonics into the pharmaceutical industries.


Subject(s)
Nanostructures/chemistry , Thalidomide/chemistry , Circular Dichroism/methods , Stereoisomerism
3.
ACS Nano ; 12(8): 8748-8757, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30071167

ABSTRACT

Current-injected elliptical nanorod light-emitting diodes (LEDs) are demonstrated to emit polarized light with a bottom-emitting configuration. The polarization ratio of the electroluminescence reaches 3.17 when the length of the minor axis for the elliptical nanorods is as small as 150 nm. Electromagnetic simulation confirms the occurrence of the polarization selectivity especially when the length of the minor axis is down to 150 nm. Light with different polarization travels at different speeds in these asymmetric elliptical nanorods. Only one polarization experiences destructive interference between the light directly from the source and the reflected light by the top metal interface. A thin light-blocking layer is incorporated to increase the polarization selectivity. It is also not recommended to infill the gap with SiO2 since the polarization selectivity will be reduced. The proposed nanorod LEDs are fabricated using top-down nanofabrication approaches by combining nanospherical-lens lithography and two-step etch processes, which are both fully compatible with current semiconductor manufacturing processes. Results in this study will help to develop a chip-level polarization-selecting LED, which will be very useful for applications that require polarized light. It is especially beneficial for applications that are not suitable for using an external polarizer or require polarized light at the individual chip level.

4.
ACS Appl Mater Interfaces ; 9(29): 24917-24925, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28671812

ABSTRACT

Nanophotonics has been a focused research discipline for the past decade and has resulted in many novel concepts that promise to change human life. However, the actual penetration of this research into real products is severely limited mostly due to the slow development of economic nanofabrication. In this study, we have demonstrated a versatile and low-cost nanofabrication method referred to as "angled nanospherical-lens lithography (A-NLL)", which is able to produce large-scale and periodic nanopatterns. The nanopatterns designed within a two-dimensional polar chart can be carefully fabricated on the substrate. The fabricated patterns easily cover an area larger than 1 cm2, which is beneficial as platforms for surface enhanced infrared absorption (SEIRA) where an expensive and bulky IR microscope is not required. We believe that the proposed A-NLL method is ideal for industrialization of future nanophotonic applications.

SELECTION OF CITATIONS
SEARCH DETAIL