Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
iScience ; 27(7): 110159, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39021792

ABSTRACT

Alcohol use disorder (AUD) is a disorder of clinical and public health significance requiring novel and improved therapeutic solutions. Both environmental and genetic factors play a significant role in its pathophysiology. However, the underlying epigenetic molecular mechanisms that link the gene-environment interaction in AUD remain largely unknown. In this proof-of-concept study, we showed, for the first time, the neuroepigenetic biomarker capability of non-invasive imaging of class I histone deacetylase (HDAC) epigenetic enzymes in the in vivo brain for classifying AUD patients from healthy controls using a machine learning approach in the context of precision diagnosis. Eleven AUD patients and 16 age- and sex-matched healthy controls completed a simultaneous positron emission tomography-magnetic resonance (PET/MR) scan with the HDAC-binding radiotracer [11C]Martinostat. Our results showed lower HDAC expression in the anterior cingulate region in AUD. Furthermore, by applying a genetic algorithm feature selection, we identified five particular brain regions whose combined [11C]Martinostat relative standard uptake value (SUVR) features could reliably classify AUD vs. controls. We validate their promising classification reliability using a support vector machine classifier. These findings inform the potential of in vivo HDAC imaging biomarkers coupled with machine learning tools in the objective diagnosis and molecular translation of AUD that could complement the current diagnostic and statistical manual of mental disorders (DSM)-based intervention to propel precision medicine forward.

2.
Adv Sci (Weinh) ; : e2309021, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923244

ABSTRACT

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic stratagem for neurodegenerative disorders, particularly Alzheimer's disease (AD). A positron emission tomography (PET) probe enabling brain RIPK1 imaging can provide a powerful tool to unveil the neuropathology associated with RIPK1. Herein, the development of a new PET radioligand, [11C]CNY-10 is reported, which may enable brain RIPK1 imaging. [11C]CNY-10 is radiosynthesized with a high radiochemical yield (41.8%) and molar activity (305 GBq/µmol). [11C]CNY-10 is characterized by PET imaging in rodents and a non-human primate, demonstrating good brain penetration, binding specificity, and a suitable clearance kinetic profile. It is performed autoradiography of [11C]CNY-10 in human AD and healthy control postmortem brain tissues, which shows strong radiosignal in AD brains higher than healthy controls. Subsequently, it is conducted further characterization of RIPK1 in AD using [11C]CNY-10-based PET studies in combination with immunohistochemistry leveraging the 5xFAD mouse model. It is found that AD mice revealed RIPK1 brain signal significantly higher than WT control mice and that RIPK1 is closely related to amyloid plaques in the brain. The studies enable further translational studies of [11C]CNY-10 for AD and potentially other RIPK1-related human studies.

3.
J Med Chem ; 67(8): 6207-6217, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38607332

ABSTRACT

Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.


Subject(s)
Alzheimer Disease , Brain , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, sigma , Sigma-1 Receptor , Receptors, sigma/metabolism , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/metabolism , Brain/diagnostic imaging , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Mice , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Male , Molecular Imaging/methods , Halogenation , Tissue Distribution , Humans
4.
Drug Des Devel Ther ; 18: 819-827, 2024.
Article in English | MEDLINE | ID: mdl-38511202

ABSTRACT

Introduction: Sirtuins (SIRTs) comprise a group of histone deacetylase enzymes crucial for regulating metabolic pathways and contributing significantly to various disease mechanisms. Sirtuin 1 (SIRT1), among the seven known mammalian homologs, is extensively investigated and understood, playing a key role in neurodegenerative disorders and cancer. This study focuses on potential as a therapeutic target for conditions such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD). Methods: Utilizing positron emission tomography (PET) as a noninvasive molecular imaging modality, we aimed to expedite the validation of a promising sirtuin 1 inhibitor for clinical trials. However, the absence of a validated sirtuin 1 PET radiotracer impedes clinical translation. We present the development of [11C]1, and 11C-labeled benzoxazine-based derivative, as a lead imaging probe. The radiosynthesis of [11C]1 resulted in a radiochemical yield of 31 ± 4%. Results: Baseline studies demonstrated that [11C]1 exhibited excellent blood-brain barrier (BBB) penetration capability, with uniform accumulation throughout various brain regions. Self-blocking studies revealed that introducing an unlabeled compound 1, effectively blocking sirtuin 1, led to a substantial reduction in whole-brain uptake, emphasizing the in vivo specificity of [11C]1 for sirtuin 1. Discussion: The development of [11C]1 provides a valuable tool for noninvasive imaging investigations in rodent models with aberrant sirtuin 1 expression. This novel radiotracer holds promise for advancing our understanding of sirtuin 1's role in disease mechanisms and may facilitate the validation of sirtuin 1 inhibitors in clinical trials.


Subject(s)
Benzoxazines , Carbon Radioisotopes , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Benzoxazines/metabolism , Positron-Emission Tomography/methods , Neuroimaging/methods , Brain/diagnostic imaging , Brain/metabolism , Mammals/metabolism
5.
Bioorg Chem ; 146: 107279, 2024 May.
Article in English | MEDLINE | ID: mdl-38513325

ABSTRACT

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic strategy for various neurodegenerative disorders. The development of a positron emission tomography (PET) probe for brain RIPK1 imaging could offer a valuable tool to assess therapeutic effectiveness and uncover the neuropathology associated with RIPK1. In this study, we present the development and characterization of two new PET radioligands, [11C]PB218 and [11C]PB220, which have the potential to facilitate brain RIPK1 imaging. [11C]PB218 and [11C]PB220 were successfully synthesized with a high radiochemical yield (34 % - 42 %) and molar activity (293 - 314 GBq/µmol). PET imaging characterization of two radioligands was conducted in rodents, demonstrating that both newly developed tracers have good brain penetration (maximum SUV = 0.9 - 1.0) and appropriate brain clearance kinetic profiles. Notably, [11C]PB218 has a more favorable binding specificity than [11C]PB220. A PET/MR study of [11C]PB218 in a non-human primate exhibited good brain penetration, desirable kinetic properties, and a safe profile, thus supporting the translational applicability of our new probe. These investigations enable further translational exploration of [11C]PB218 for drug discovery and PET probe development targeting RIPK1.


Subject(s)
Brain , Positron-Emission Tomography , Animals , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Radiopharmaceuticals/chemistry , Radiochemistry , Pyridines/metabolism
6.
Drug Des Devel Ther ; 18: 215-222, 2024.
Article in English | MEDLINE | ID: mdl-38312991

ABSTRACT

Purpose: Orexin receptors (OXRs) play a crucial role in modulating various physiological and neuropsychiatric functions within the central nervous system (CNS). Despite their significance, the precise role of OXRs in the brain remains elusive. Positron emission tomography (PET) imaging is instrumental in unraveling CNS functions, and the development of specific PET tracers for OXRs is a current research focus. Methods: The study investigated MDK-5220, an OX2R-selective agonist with promising binding properties (EC50 on OX2R: 0.023 µM, Ki on hOX2R: 0.14 µM). Synthesized and characterized as an OX2R PET probe, [11C]MDK-5220 was evaluated for its potential as a tracer. Biodistribution studies in mice were conducted to assess OX2R binding selectivity, with particular attention to its interaction with P-glycoprotein (P-gp) on the blood-brain barrier. Results: [11C]MDK-5220 exhibited promising attributes as an OX2R PET probe, demonstrating robust OX2R binding selectivity in biodistribution studies. However, an observed interaction with P-gp impacted its brain uptake. Despite this limitation, [11C]MDK-5220 presents itself as a potential candidate for further development. Discussion: The study provides insights into the functionality of the OX system and the potential of [11C]MDK-5220 as an OX2R PET probe. The observed interaction with P-gp highlights a consideration for future modifications to enhance brain uptake. The findings pave the way for innovative tracer development and propel ongoing research on OX systems, contributing to a deeper understanding of their role in the CNS. Conclusion: [11C]MDK-5220 emerges as a promising OX2R PET probe, despite challenges related to P-gp interaction. This study lays the foundation for further exploration and development of PET probes targeting OXRs, opening avenues for advancing our understanding of OX system functionality within the brain.


Subject(s)
Carbon Radioisotopes , Neuroimaging , Positron-Emission Tomography , Mice , Animals , Orexins , Tissue Distribution , Positron-Emission Tomography/methods , Orexin Receptors/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
7.
Adv Sci (Weinh) ; 11(1): e2304545, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990786

ABSTRACT

Histone deacetylase 6 (HDAC6) is one of the key histone deacetylases (HDACs) that regulates various cellular functions including clearance of misfolded protein and immunological responses. Considerable evidence suggests that HDAC6 is closely related to amyloid and tau pathology, the two primary hallmarks of Alzheimer's disease (AD). It is still unclear whether HDAC6 expression changes with amyloid deposition in AD during disease progression or HDAC6 may be regulating amyloid phagocytosis or neuroinflammation or other neuropathological changes in AD. In this work, the pathological accumulation of HDAC6 in AD brains over age as well as the relationship of its regulatory activity - with amyloid pathogenesis and pathophysiological alterations is aimed to be enlightened using the newly developed HDAC6 inhibitor (HDAC6i) PB118 in microglia BV2 cell and 3D-AD human neural culture model. Results suggest that the structure-based rational design led to biologically compelling HDAC6i PB118 with multiple mechanisms that clear Aß deposits by upregulating phagocytosis, improve tubulin/microtubule network by enhancing acetyl α-tubulin levels, regulate different cytokines and chemokines responsible for inflammation, and significantly reduce phospho-tau (p-tau) levels associated with AD. These findings indicate that HDAC6 plays key roles in the pathophysiology of AD and potentially serves as a suitable pharmacological target through chemical biology-based drug discovery in AD.


Subject(s)
Alzheimer Disease , Humans , Histone Deacetylase 6 , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Tubulin/metabolism
8.
J Med Chem ; 67(1): 555-571, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38150705

ABSTRACT

The NOD-like receptor (NLR) family pyrin-domain-containing 3 (NLRP3) inflammasome, an essential component of the innate immune system, has been emerging as a viable drug target and a potential biomarker for human diseases. In our efforts to develop novel small molecule NLRP3 inhibitors, a 1-(5-chloro-2-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole scaffold was designed via a rational approach based on our previous leads. Structure-activity relationship studies and biophysical studies identified a new lead compound 8 as a potent (IC50: 0.55 ± 0.16 µM), selective, and direct NLRP3 inhibitor. Positron emission tomography (PET) imaging studies of [11C]8 demonstrated its rapid and high brain uptake as well as fast washout in mice and rhesus macaque. Notably, plasma kinetic analysis of this radiotracer from the PET/magnetic resonance imaging studies in rhesus macaque suggested radiometabolic stability. Collectively, our data not only encourage further studies of this lead compound but also warrant further optimization to generate additional novel NLRP3 inhibitors and suitable central nervous system PET radioligands with translational promise.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , Humans , Macaca mulatta , Kinetics , Positron-Emission Tomography
9.
Proc Natl Acad Sci U S A ; 120(50): e2310131120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38048460

ABSTRACT

Optical three-dimensional (3D) molecular imaging is highly desirable for providing precise distribution of the target-of-interest in disease models. However, such 3D imaging is still far from wide applications in biomedical research; 3D brain optical molecular imaging, in particular, has rarely been reported. In this report, we designed chemiluminescence probes with high quantum yields, relatively long emission wavelengths, and high signal-to-noise ratios to fulfill the requirements for 3D brain imaging in vivo. With assistance from density-function theory (DFT) computation, we designed ADLumin-Xs by locking up the rotation of the double bond via fusing the furan ring to the phenyl ring. Our results showed that ADLumin-5 had a high quantum yield of chemiluminescence and could bind to amyloid beta (Aß). Remarkably, ADLumin-5's radiance intensity in brain areas could reach 4 × 107 photon/s/cm2/sr, which is probably 100-fold higher than most chemiluminescence probes for in vivo imaging. Because of its strong emission, we demonstrated that ADLumin-5 could be used for in vivo 3D brain imaging in transgenic mouse models of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Luminescence , Brain/diagnostic imaging , Brain/metabolism , Mice, Transgenic , Neuroimaging/methods , Plaque, Amyloid/metabolism , Disease Models, Animal
10.
J Med Chem ; 66(23): 16075-16090, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37972387

ABSTRACT

Recent studies have shown that the epigenetic protein histone deacetylase 11 (HDAC11) is highly expressed in the brain and critically modulates neuroimmune functions, making it a potential therapeutic target for neurological disorders. Herein, we report the development of PB94, which is a novel HDAC11 inhibitor. PB94 exhibited potency and selectivity against HDAC11 with IC50 = 108 nM and >40-fold selectivity over other HDAC isoforms. Pharmacokinetic/pharmacodynamic evaluation indicated that PB94 possesses promising drug-like properties. Additionally, PB94 was radiolabeled with carbon-11 as [11C]PB94 for positron emission tomography (PET), which revealed significant brain uptake and metabolic properties suitable for drug development in live animals. Furthermore, we demonstrated that neuropathic pain was associated with brain upregulation of HDAC11 and that pharmacological inhibition of HDAC11 by PB94 ameliorated neuropathic pain in a mouse model. Collectively, our findings support further development of PB94 as a selective HDAC11 inhibitor for neurological indications, including pain.


Subject(s)
Neuralgia , Neuroinflammatory Diseases , Animals , Mice , Brain/metabolism , Histone Deacetylases/metabolism , Neuralgia/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use
12.
BMC Med ; 21(1): 402, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880708

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is the most common malignancy diagnosed in men. Immune checkpoint blockade (ICB) alone showed disappointing results in PCa. It is partly due to the formation of immunosuppressive tumor microenvironment (TME) could not be reversed effectively by ICB alone. METHODS: We used PCa cell lines to evaluate the combined effects of CN133 and anti-PD-1 in the subcutaneous and osseous PCa mice models, as well as the underlying mechanisms. RESULTS: We found that CN133 could reduce the infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and CN133 combination with anti-PD-1 could augment antitumor effects in the subcutaneous PCa of allograft models. However, anti-PD-1 combination with CN133 failed to elicit an anti-tumor response to the bone metastatic PCa mice. Mechanistically, CN133 could inhibit the infiltration of PMN-MDSCs in the TME of soft tissues by downregulation gene expression of PMN-MDSC recruitment but not change the gene expression involved in PMN-MDSC activation in the CN133 and anti-PD-1 co-treatment group relative to the anti-PD-1 alone in the bone metastatic mice model. CONCLUSIONS: Taken together, our work firstly demonstrated that combination of CN133 with anti-PD-1 therapy may increase the therapeutic efficacy to PCa by reactivation of the positive immune microenvironment in the TME of soft tissue PCa.


Subject(s)
Myeloid-Derived Suppressor Cells , Prostatic Neoplasms , Humans , Male , Animals , Mice , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/pharmacology , Myeloid-Derived Suppressor Cells/metabolism , Tumor Microenvironment , Cell Line, Tumor , Immunotherapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics
13.
Virol J ; 20(1): 223, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789347

ABSTRACT

BACKGROUND: Citrus tristeza virus (CTV) is one of the most serious threats to the citrus industry, and is present in both wild and cultivated citrus. The origin and dispersal patterns of CTV is still poorly understood in China. METHODS: In this study, 524 CTV suspected citrus samples from China were collected, including 354 cultivated citrus samples and 174 wild citrus samples. Finally, 126 CTV coat protein sequences were obtained with time-stamped from 10 citrus origins in China. Bayesian phylodynamic inference were performed for CTV origin and dispersal patterns study in China. RESULT: We found that CTV was mainly distributed in southern and coastal areas of China. The substitution rate of CTV was 4.70 × 10- 4 subs/site/year (95% credibility interval: 1.10 × 10- 4 subs/site/year ~ 9.10 × 10- 4 subs/site/year), with a slight increasing trend in CTV populations between 1990 and 2006. The CTV isolates in China shared a most common recent ancestor around 1875 (95% credibility interval: 1676.57 ~ 1961.02). The CTV in China was originated from wild citrus in Hunan and Jiangxi, and then spread from the wild citrus to cultivated citrus in the growing regions of Sichuan, Chongqing, Hubei, Fujian, Zhejiang, Guangxi and Guangdong provinces. CONCLUSIONS: This study has proved that CTV in China was originated from wild citrus in Hunan and Jiangxi. The spatial-temporal distribution and dispersal patterns has uncovered the population and pandemic history of CTV, providing hints toward a better understanding of the spread and origin of CTV in China.


Subject(s)
Citrus , Closterovirus , Bayes Theorem , China , Plant Diseases , Closterovirus/genetics
14.
Nat Commun ; 14(1): 6696, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880241

ABSTRACT

Chronic pain is highly prevalent and is linked to a broad range of comorbidities, including sleep disorders. Epidemiological and clinical evidence suggests that chronic sleep disruption (CSD) leads to heightened pain sensitivity, referred to as CSD-induced hyperalgesia. However, the underlying mechanisms are unclear. The thalamic reticular nucleus (TRN) has unique integrative functions in sensory processing, attention/arousal and sleep spindle generation. We report that the TRN played an important role in CSD-induced hyperalgesia in mice, through its projections to the ventroposterior region of the thalamus. Metabolomics revealed that the level of N-arachidonoyl dopamine (NADA), an endocannabinoid, was decreased in the TRN after CSD. Using a recently developed CB1 receptor (cannabinoid receptor 1) activity sensor with spatiotemporal resolution, CB1 receptor activity in the TRN was found to be decreased after CSD. Moreover, CSD-induced hyperalgesia was attenuated by local NADA administration to the TRN. Taken together, these results suggest that TRN NADA signaling is critical for CSD-induced hyperalgesia.


Subject(s)
Dopamine , Endocannabinoids , Mice , Animals , Dopamine/pharmacology , Hyperalgesia , Receptor, Cannabinoid, CB1 , Thalamic Nuclei , Sleep
15.
Alzheimers Dement ; 19(9): 4110-4126, 2023 09.
Article in English | MEDLINE | ID: mdl-37249148

ABSTRACT

INTRODUCTION: Blood phosphorylated tau at threonine 217 (tau-PT217) is a newly established biomarker for Alzheimer's disease and postoperative delirium in patients. However, the mechanisms and consequences of acute changes in blood tau-PT217 remain largely unknown. METHODS: We investigated the effects of anesthesia/surgery on blood tau-PT217 in aged mice, and evaluated the associated changes in B cell populations, neuronal excitability in anterior cingulate cortex, and delirium-like behavior using positron emission tomography imaging, nanoneedle technology, flow cytometry, electrophysiology, and behavioral tests. RESULTS: Anesthesia/surgery induced acute increases in blood tau-PT217 via enhanced generation in the lungs and release from B cells. Tau-PT217 might cross the blood-brain barrier, increasing neuronal excitability and inducing delirium-like behavior. B cell transfer and WS635, a mitochondrial function enhancer, mitigated the anesthesia/surgery-induced changes. DISCUSSION: Acute increases in blood tau-PT217 may contribute to brain dysfunction and postoperative delirium. Targeting B cells or mitochondrial function may have therapeutic potential for preventing or treating these conditions.


Subject(s)
Alzheimer Disease , Anesthesia , Emergence Delirium , Mice , Animals , tau Proteins/metabolism , Phosphorylation
16.
JCI Insight ; 8(11)2023 06 08.
Article in English | MEDLINE | ID: mdl-37159265

ABSTRACT

Trigeminal neuralgia (TN) is a classic neuralgic pain condition with distinct clinical characteristics. Modeling TN in rodents is challenging. Recently, we found that a foramen in the rodent skull base, the foramen lacerum, provides direct access to the trigeminal nerve root. Using this access, we developed a foramen lacerum impingement of trigeminal nerve root (FLIT) model and observed distinct pain-like behaviors in rodents, including paroxysmal asymmetric facial grimaces, head tilt when eating, avoidance of solid chow, and lack of wood chewing. The FLIT model recapitulated key clinical features of TN, including lancinating pain-like behavior and dental pain-like behavior. Importantly, when compared with a trigeminal neuropathic pain model (infraorbital nerve chronic constriction injury [IoN-CCI]), the FLIT model was associated with significantly higher numbers of c-Fos-positive cells in the primary somatosensory cortex (S1), unraveling robust cortical activation in the FLIT model. On intravital 2-photon calcium imaging, synchronized S1 neural dynamics were present in the FLIT but not the IoN-CCI model, revealing differential implication of cortical activation in different pain models. Taken together, our results indicate that FLIT is a clinically relevant rodent model of TN that could facilitate pain research and therapeutics development.


Subject(s)
Neuralgia , Trigeminal Neuralgia , Rats , Animals , Rodentia , Rats, Sprague-Dawley , Trigeminal Nerve
17.
Eur J Med Chem ; 254: 115327, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37098307

ABSTRACT

Targeting histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic approach for anti-inflammation and related biological pathways, including inflammatory events associated with the brain. In this study, in order to develop brain-permeable HDAC6 inhibitors for anti-neuroinflammation, we report here the design, synthesis, and characterization of a number of N-heterobicyclic analogues that can inhibit HDAC6 with high specificity and strong potency. Among our analogues, PB131 exhibits potent binding affinity and selectivity against HDAC6, with an IC50 value of 1.8 nM and more than 116-fold selectivity over other HDAC isoforms. In addition, PB131 shows good brain penetration, binding specificity, and reasonable biodistribution through our positron emission tomography (PET) imaging studies of [18F]PB131 in mice. Furthermore, we characterized the efficacy of PB131 on regulating neuroinflammation using the mouse microglia model BV2 cells in vitro and the LPS-induced inflammation mouse model in vivo. These data not only indicate the anti-inflammatory activity of our novel HDAC6 inhibitor PB131, but also strengthen the biological functions of HDAC6 and further extend the therapeutic approach inhibiting HDAC6. Our findings show that PB131 displays good brain permeability, high specificity, and strong potency toward inhibiting HDAC6 and is a potential HDAC6 inhibitor for inflammation-related disease treatment, especially neuroinflammation.


Subject(s)
Brain , Histone Deacetylase Inhibitors , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Brain/metabolism , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/chemistry , Tissue Distribution
18.
Mol Pharm ; 20(4): 1990-1995, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36827644

ABSTRACT

Accrued evidence has indicated that epigenetic mechanisms altered by alcohol have been implicated in the progression and development of alcoholic liver disease (ALD). SIRT1 plays an important role in ALD progression and has emerged as a promising therapeutic target for treating ALD. The purpose of this study is to investigate the efficacy of [11C]WL-1 for quantitative imaging of SIRT1 in mouse models of early-stage ALD. Positron emission tomography/computerized tomography (PET/CT) imaging was carried out 60 min following the injection of [11C]WL-1 in mouse models of early-stage ALD and normal control mice. The time-activity curves for ALD mouse livers showed remarkably decreased total uptake of [11C]WL-1 relative to that for control mouse livers. Moreover, compared with the normal control mice, decreased uptake in the cortex, hippocampus, and cerebellum was also observed in early-stage ALD mice, while the uptake of [11C]WL-1 in amygdala showed no significant changes. Western blot analysis confirmed that the protein levels of SIRT1 in the brains of early-stage ALD mice were decreased significantly when compared to the normal control mouse brains. Collectively, PET imaging with [11C]WL-1 would facilitate future clinical studies, aiming to demonstrate the roles of SIRT1 in ALD.


Subject(s)
Liver Diseases, Alcoholic , Sirtuin 1 , Animals , Mice , Sirtuin 1/metabolism , Positron Emission Tomography Computed Tomography , Liver Diseases, Alcoholic/diagnostic imaging , Liver Diseases, Alcoholic/metabolism , Ethanol/metabolism , Liver/diagnostic imaging , Liver/metabolism
19.
J Clin Invest ; 133(5)2023 03 01.
Article in English | MEDLINE | ID: mdl-36602876

ABSTRACT

Cortical neural dynamics mediate information processing for the cerebral cortex, which is implicated in fundamental biological processes such as vision and olfaction, in addition to neurological and psychiatric diseases. Spontaneous pain is a key feature of human neuropathic pain. Whether spontaneous pain pushes the cortical network into an aberrant state and, if so, whether it can be brought back to a "normal" operating range to ameliorate pain are unknown. Using a clinically relevant mouse model of neuropathic pain with spontaneous pain-like behavior, we report that orofacial spontaneous pain activated a specific area within the primary somatosensory cortex (S1), displaying synchronized neural dynamics revealed by intravital two-photon calcium imaging. This synchronization was underpinned by local GABAergic interneuron hypoactivity. Pain-induced cortical synchronization could be attenuated by manipulating local S1 networks or clinically effective pain therapies. Specifically, both chemogenetic inhibition of pain-related c-Fos-expressing neurons and selective activation of GABAergic interneurons significantly attenuated S1 synchronization. Clinically effective pain therapies including carbamazepine and nerve root decompression could also dampen S1 synchronization. More important, restoring a "normal" range of neural dynamics through attenuation of pain-induced S1 synchronization alleviated pain-like behavior. These results suggest that spontaneous pain pushed the S1 regional network into a synchronized state, whereas reversal of this synchronization alleviated pain.


Subject(s)
Cerebral Cortex , Neuralgia , Animals , Mice , Interneurons/physiology , Neuralgia/genetics , Neuralgia/therapy , Neurons , Somatosensory Cortex
20.
Acta Pharm Sin B ; 12(10): 3891-3904, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36213537

ABSTRACT

Although the epigenetic regulatory protein histone deacetylase 6 (HDAC6) has been recently implicated in the etiology of Alzheimer's disease (AD), little is known about the role of HDAC6 in the etiopathogenesis of AD and whether HDAC6 can be a potential therapeutic target for AD. Here, we performed positron emission tomography (PET) imaging in combination with histopathological analysis to better understand the underlying pathomechanisms of HDAC6 in AD. We first developed [18F]PB118 which was demonstrated as a valid HDAC6 radioligand with excellent brain penetration and high specificity to HDAC6. PET studies of [18F]PB118 in 5xFAD mice showed significantly increased radioactivity in the brain compared to WT animals, with more pronounced changes identified in the cortex and hippocampus. The translatability of this radiotracer for AD in a potential human use was supported by additional studies, including similar uptake profiles in non-human primates, an increase of HDAC6 in AD-related human postmortem hippocampal tissues by Western blotting protein analysis, and our ex vivo histopathological analysis of HDAC6 in postmortem brain tissues of our animals. Collectively, our findings show that HDAC6 may lead to AD by mechanisms that tend to affect brain regions particularly susceptible to AD through an association with amyloid pathology.

SELECTION OF CITATIONS
SEARCH DETAIL