Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 41(6): 1019-1026, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856409

ABSTRACT

We present a highly efficient method for characterizing the scattering field distribution of surface plasmon polaritons in metallic components by combining the eXtended Pseudospectral Frequency-Domain (X-PSFD) method with an iterative, machine-learning-inspired procedure. Shifting away from traditional matrix operations, we utilize the "Adam" optimizer-an effective and swift machine learning algorithm-to solve the scattering field distribution. Our method encompasses the derivation of the associated cost function and gradient differentiation of the field, leveraging spectral accuracy at Legendre collocation points in the Helmholtz equation. We refine the total-field/scattered-field (TF/SF) formulation within the X-PSFD framework for optimized incident field management and employ Chebyshev-Lagrange interpolation polynomials for rapid, accurate computation of broad-band results. To ensure global accuracy, we introduce unique physical boundary conditions at subdomain interfaces. Demonstrating our method's robustness and computational efficiency, we model perfect electric conductors (PECs) and silver nanocylinders, and we apply our approach to analyze the excited electric field on subtly distorted metallic surfaces, particularly plasmonic structures, thereby validating its wide-ranging effectiveness.

2.
Appl Opt ; 62(14): 3690-3695, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37706986

ABSTRACT

We propose a realistic process for the excitation of surface plasmon polariton (SPP) modes in a silicon photonic waveguide (WG). The process involves the placement of buried oxide (BOX) composed of silica between a WG and silicon substrate. When the BOX thickness is manipulated, different amounts of modal power leak toward the BOX into the substrate and simultaneously acquire compensation from a semiconductor located on the WG. The compensation related to the leakage can be used to infer transparency gain. Similar to the case for a semiconductor laser cavity, the lowest transparency gain among WG modes can be favored; thus, only one mode can survive in the WG, and it is in the region with the specified BOX thickness. Finally, we propose a credible mechanism suitable for demonstrating the region requirements of the existence of SPP modes.

SELECTION OF CITATIONS
SEARCH DETAIL
...