Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(15): 8606-8617, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581395

ABSTRACT

Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.


Subject(s)
Angiotensin-Converting Enzyme 2 , Hypertension , Rats , Animals , Rats, Inbred SHR , Angiotensin-Converting Enzyme 2/metabolism , Biological Availability , Kynurenine/metabolism , Kynurenine/pharmacology , Tryptophan/metabolism , Peptides/metabolism , Antihypertensive Agents/pharmacology , Blood Pressure , Hypertension/metabolism , Peptidyl-Dipeptidase A/metabolism
2.
Anal Chim Acta ; 1288: 342137, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220274

ABSTRACT

BACKGROUND: Chemical isotope labeling (CIL) LC-MS is a powerful tool for metabolome analysis with high metabolomic coverage and quantification accuracy. In CIL LC-MS, the overall metabolite detection efficiency using Orbitrap MS can be further improved by employing a segment scan method where the full m/z range is divided into multiple segments for spectral acquisition with a significant increase in the in-spectrum dynamic range. Considering the metabolic complexity in different types of biological samples (e.g., feces, urine, serum/plasma, cell/tissue extracts, saliva, etc.), we report the development and evaluation of the segment scan method for metabolome analysis of different sample types. RESULTS: It was found that sample complexity significantly influenced the performance of the segment scan method. In metabolically complex samples such as feces and urine, the method yielded a substantial increase (up to 94 %) in detected peak pairs or metabolites, compared to conventional full scan. Conversely, less complex samples like saliva exhibited more modest gains (approximately 25 %). Based on the observations, a 120-m/z segment scan method was determined as a routine approach for CIL LC-Orbitrap-MS-based metabolomics with good compatibility with different types of biological samples. For this method, a further investigation on relative quantification accuracy was done. The peak area ratios of 12C-/13-labeled metabolites were slightly reduced with 72%-84 % of peak pairs falling within the ±25 % range of the anticipated peak ratio of 1.0 among different samples, as opposed to 81%-90 % in the full scan, which was attributed to the inclusion of more low-abundance peak pairs within the narrow MS segments. However, the overall peak ratio measurement precision was not significantly affected by the segment scan. SIGNIFICANCE AND NOVELTY: The segment scan method was found to be useful for CIL LC-Orbitrap-MS-based metabolome analysis of different types of samples with significant improvement in metabolite detectability (25-94 % increase), compared to the conventional full scan method.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Isotope Labeling/methods , Dansyl Compounds , Metabolome , Metabolomics/methods
3.
Anal Chim Acta ; 1226: 340255, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36068057

ABSTRACT

Chemical isotope labeling (CIL) LC-MS is a powerful tool for metabolome analysis with markedly improved metabolomic coverage and quantification accuracy over the conventional LC-MS technique. In addition, with differential isotope labeling, each labeled metabolite is detected as a peak pair in the mass spectra, offering the possibility of differentiating true metabolite peaks from the singlet noise or background peaks. In this study, we examined the effects of instrument type on the detectability of true metabolites with a focus on the comparison of quadrupole time-of-flight (QTOF) and Orbitrap mass spectrometers. Using the same ultra-high-performance liquid chromatography setup and optimized running conditions for QTOF and Orbitrap, we compared the total number of peak pairs detected and identified from the two instruments using human urine and serum as the test samples. Many common peak pairs were detected from the two instruments; however, there were a significant number of unique peak pairs detected in each type of instrument. By combining the datasets obtained using QTOF and Orbitrap, the total number of peak pairs detected could be significantly increased. We also examined the effect of mass resolving power on peak pair detection in Orbitrap (60,000 vs. 120,000 resolution). The observed differences in peak pair detectability were much less than those of QTOF vs. Orbitrap. However, the type of peak pairs detected using different resolutions could be somewhat different, offering the possibility of increasing the overall number of peak pairs by combining the two datasets obtained at two different resolutions. The results from this study clearly indicate that instrument type can have a profound effect on metabolite detection in CIL LC-MS. Therefore, comparison of metabolome data generated using different instruments needs to be carefully done. Moreover, future research (e.g., hardware modifications) is warranted to minimize the differences in order to generate more reproducible metabolome data from different types of instruments.


Subject(s)
Dansyl Compounds , Isotope Labeling , Humans , Chromatography, Liquid/methods , Dansyl Compounds/chemistry , Isotope Labeling/methods , Metabolome , Metabolomics/methods , Tandem Mass Spectrometry
4.
Anal Chem ; 94(33): 11650-11658, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35926115

ABSTRACT

We report a segmented spectrum scan method using Orbitrap MS in chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) for improving the metabolite detection efficiency. In this method, the full m/z range is divided into multiple segments with the scanning of each segment to produce multiple narrow-range spectra during the LC data acquisition. These segmented spectra are separately processed to extract the peak pair information with each peak pair arising from a differentially labeled metabolite in the analysis of a mixture of 13C and 12C reagent-labeled samples. The sublists of peak pairs are merged to form the final peak pair list from the LC-MS run. Various experimental conditions, including automatic gain control (AGC) values, mass resolutions, segment m/z widths, number of segments, and total data acquisition time in the LC run, were examined to arrive at an optimal setting in the segment scan for increasing the number of detectable metabolites while maintaining the same analysis time as in the full scan. The optimal method used a segment width of 120 m/z with 60k resolution for a 16 min CIL LC-MS run. Using dansyl-labeled human urine samples as an example, we demonstrated that this method could detect 5867 peak pairs or metabolites (not features), compared to 3765 peak pairs detectable in a full scan, representing a 56% gain. Out of 5867 peak pairs, 5575 (95.0%) could be identified or mass-matched. The relative quantification accuracy was slightly reduced (81% peak pairs were within ±25% of the expected peak ratio of 1.0 in full, compared to 87% in the full scan) due to the inclusion of more low-abundance peak pairs in the segment scan. The peak ratio measurement precision was not significantly affected by the segment scan. We also showed the increase of the peak pair number detectable from 3843 in the full scan to 7273 (89% gain) using the Orbitrap operated at 120k resolution with a 60 m/z segment width when multiple repeat sample injections were used. Thus, segment scan Orbitrap MS is an enabling method for detecting coeluting metabolites in CIL LC-MS for increasing the metabolomic coverage.


Subject(s)
Dansyl Compounds , Isotope Labeling , Humans , Carbon Isotopes/chemistry , Chromatography, Liquid/methods , Dansyl Compounds/chemistry , Isotope Labeling/methods , Mass Spectrometry/methods , Metabolome , Metabolomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...