Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.528
Filter
1.
Redox Biol ; 73: 103190, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38744191

ABSTRACT

Parkinson's disease (PD) poses a significant challenge in neurodegenerative disorders, characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The intricate mechanisms orchestrating DA neurodegeneration in PD are not fully understood, necessitating the exploration of innovative therapeutic approaches. Recent studies have implicated ferroptosis as a major contributor to the loss of DA neurons, revealing a complex interplay between iron accumulation and neurodegeneration. However, the sophisticated nature of this process challenges the conventional belief that mere iron removal could effectively prevent DA neuronal ferroptosis. Here, we report JWA, alternatively referred to as ARL6IP5, as a negative regulator of ferroptosis, capable of ameliorating DA neuronal loss in the context of PD. In this study, synchronized expression patterns of JWA and tyrosine hydroxylase (TH) in PD patients and mice were observed, underscoring the importance of JWA for DA neuronal survival. Screening of ferroptosis-related genes unraveled the engagement of iron metabolism in the JWA-dependent inhibition of DA neuronal ferroptosis. Genetic manipulation of JWA provided compelling evidence linking its neuroprotective effects to the attenuation of NCOA4-mediated ferritinophagy. Molecular docking, co-immunoprecipitation, and immunofluorescence studies confirmed that JWA mitigated DA neuronal ferroptosis by occupying the ferritin binding site of NCOA4. Moreover, the JWA-activating compound, JAC4, demonstrated promising neuroprotective effects in cellular and animal PD models by elevating JWA expression, offering a potential avenue for neuroprotection in PD. Collectively, our work establishes JWA as a novel regulator of ferritinophagy, presenting a promising therapeutic target for addressing DA neuronal ferroptosis in PD.

2.
Oncol Lett ; 28(1): 295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38737975

ABSTRACT

Apolipoprotein A-I (APOA1) performs different roles in different subtypes of breast cancer. It is hypothesized to function as a tumor suppressor in basal-like breast cancer (BLBC). However, the specific role of APOA1 in BLBC and its underlying mechanisms remain unknown. The findings of the present study demonstrated a positive correlation between the expression level of APOA1 and the overall survival of patients with BLBC. Ectopic expression of APOA1 effectively inhibits the proliferation and metastasis of BLBC cells in vitro, and these effects are closely related to DNA methylation. To the best of our knowledge, the present study is the first to report increased methylation of the promoter region and decreased methylation of the structural genes of APOA1 in BLBC cells. These alterations resulted in the downregulation of APOA1 expression and suppression of BLBC tumor growth. Collectively, the results of the present study suggested that APOA1 mRNA expression is negatively regulated by DNA methylation in BLBC. Therefore, low expression of APOA1 may be a potential risk biomarker to predict survival in patients with BLBC.

3.
Ren Fail ; 46(1): 2349133, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726999

ABSTRACT

OBJECTIVE:  The clinical characteristics, genetic mutation spectrum, treatment strategies and prognoses of 15 children with Dent disease were retrospectively analyzed to improve pediatricians' awareness of and attention to this disease. METHODS:  We analyzed the clinical and laboratory data of 15 Chinese children with Dent disease who were diagnosed and treated at our hospital between January 2017 and May 2023 and evaluated the expression of the CLCN5 and OCRL1 genes. RESULTS:  All 15 patients were male and complained of proteinuria, and the incidence of low-molecular-weight proteinuria (LMWP) was 100.0% in both Dent disease 1 (DD1) and Dent disease 2 (DD2) patients. The incidence of hypercalciuria was 58.3% (7/12) and 66.7% (2/3) in DD1 and DD2 patients, respectively. Nephrocalcinosis and nephrolithiasis were found in 16.7% (2/12) and 8.3% (1/12) of DD1 patients, respectively. Renal biopsy revealed focal segmental glomerulosclerosis (FSGS) in 1 patient, minimal change lesion in 5 patients, and small focal acute tubular injury in 1 patient. A total of 11 mutations in the CLCN5 gene were detected, including 3 missense mutations (25.0%, c.1756C > T, c.1166T > G, and c.1618G > A), 5 frameshift mutations (41.7%, c.407delT, c.1702_c.1703insC, c.137delC, c.665_666delGGinsC, and c.2200delG), and 3 nonsense mutations (25.0%, c.776G > A, c.1609C > T, and c.1152G > A). There was no significant difference in age or clinical phenotype among patients with different mutation types (p > 0.05). All three mutations in the OCRL1 gene were missense mutations (c.1477C > T, c.952C > T, and c.198A > G). CONCLUSION:  Pediatric Dent disease is often misdiagnosed. Protein electrophoresis and genetic testing can help to provide an early and correct diagnosis.


Subject(s)
Chloride Channels , Dent Disease , Phosphoric Monoester Hydrolases , Humans , Male , Child , Chloride Channels/genetics , Retrospective Studies , Child, Preschool , China/epidemiology , Dent Disease/genetics , Dent Disease/diagnosis , Phosphoric Monoester Hydrolases/genetics , Mutation , Proteinuria/genetics , Adolescent , Hypercalciuria/genetics , Nephrocalcinosis/genetics , Nephrolithiasis/genetics , Infant , Genetic Testing , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/diagnosis , Mutation, Missense , Female , Glomerulosclerosis, Focal Segmental/genetics , Kidney/pathology , East Asian People
4.
Int J Ophthalmol ; 17(5): 869-876, 2024.
Article in English | MEDLINE | ID: mdl-38766331

ABSTRACT

AIM: To investigate the difference in risk factors between non-arteritic anterior ischaemic optic neuropathy (NAION) and central retinal artery occlusion (CRAO) and develop a predictive diagnostic nomogram. METHODS: The study included 37 patients with monocular NAION, 20 with monocular CRAO, and 24 with hypertension. Gender, age, and systemic diseases were recorded. Blood routine, lipids, hemorheology, carotid and brachial artery doppler ultrasound, and echocardiography were collected. The optic disc area, cup area, and cup-to-disc ratio (C/D) of the unaffected eye in the NAION and CRAO group and the right eye in the hypertension group were measured. RESULTS: The carotid artery intimal medial thickness (C-IMT) of the affected side of the CRAO group was thicker (P=0.039) and its flow-mediated dilation (FMD) was lower (P=0.049) than the NAION group. Compared with hypertension patients, NAION patients had higher whole blood reduced viscosity low-shear (WBRV-L) and erythrocyte aggregation index (EAI; P=0.045, 0.037), and CRAO patients had higher index of rigidity of erythrocyte (IR) and erythrocyte deformation index (EDI; P=0.004, 0.001). The optic cup and the C/D of the NAION group were smaller than the other two groups (P<0.0001). The diagnostic prediction model showed high diagnostic specificity (83.7%) and sensitivity (85.6%), which was highly related to hypertension, the C-IMT of the affected side, FMD, platelet (PLT), EAI, and C/D. CONCLUSION: CRAO patients show thicker C-IMT and worse endothelial function than NAION. NAION and CRAO may be related to abnormal hemorheology. A small cup and small C/D may be involved in NAION. The diagnostic nomogram can be used to preliminarily identify NAION and CRAO.

5.
Int J Biol Macromol ; : 132241, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768916

ABSTRACT

The abnormal uric acid (UA) level in urine can serve as warning signals of many diseases, such as gout and metabolic cardiovascular diseases. The current methods for detecting UA face limitations of instrument dependence and the requirement for non-invasiveness, making it challenging to fulfill the need for home-based application. In this study, we designed an aptasensor that combined UA-specific transcriptional regulation and a fluorescent RNA aptamer for convenient urinary UA testing. The concentration of UA can be translated into the intensity of fluorescent signals. The aptasensor showed higher sensitivity and more robust anti-interference performance. UA levels in the urine of different volunteers could be accurately tested using this method. In addition, a paper-based aptasensor for UA self-testing was manufactured, in which the urinary UA levels could be determined using a smartphone-based colorimetric approach. This work not only demonstrates a new approach for the design of disease-associated aptasensor, but also offers promising ideas for home-based detection of UA.

6.
Nanoscale ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758021

ABSTRACT

The ever-growing challenges of traditional antibiotic therapy and chronic wound healing have created a hot topic for the development and application of new antimicrobial agents. Silver nanoclusters (Ag NCs) with ultrasmall sizes (<2 nm) and antibacterial effects are promising candidates for next-generation antibiotics, particularly against multi-drug resistant strains. However, the biosafety in the clinical application of Ag NCs remains suboptimal despite some existing studies of Ag NCs for biomedical applications. Considering this, an ultrasmall Ag NC with excellent water solubility was synthesized by a two-phase ligand-exchange method, which exhibits broad-spectrum antibacterial performance. The minimum inhibitory concentrations of Ag NCs against MRSA, S. aureus, P. aeruginosa and E. coli were evaluated as 50, 80, 5 and 5 µg mL-1, respectively. Furthermore, a carbomer hydrogel was prepared to be incorporated into the Ag NCs for achieving excellent biocompatibility and biosafety. In vitro experiments demonstrate that the Ag NC-gel exhibits good antibacterial properties with lower cytotoxicity. Finally, in vivo experiments suggest that this ultrasmall Ag NC functionalized with the hydrogel can serve as an effective and safe antimicrobial agent to aid in wound healing.

7.
Chin Med ; 19(1): 69, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745234

ABSTRACT

BACKGROUND: Postmenopausal osteoporosis is a chronic metabolic bone disease caused by excessive osteoclast formation and function. Targeting osteoclast differentiation and activity can modulate bone resorption and alleviate osteoporosis. Cirsilineol, an active constituent of Vestita Wall, has shown numerous biological activities and has been used to treat many metabolic diseases. However, whether cirsilineol inhibits osteoclast activity and prevents postmenopausal osteoporosis still remain unknown. MATERIALS AND METHODS: Primary bone marrow macrophages (BMMs) and RAW264.7 cells were used. Osteoclast activity was measured by TRAP staining, F-actin staining, and bone resorption assay after BMMs were treated with cirsilineol at concentrations of 0, 1, 2.5 and 5 µM. RT-PCR and western blotting were performed to evaluate the expression of osteoclast-related genes. In addition, female C57BL/6 mice underwent OVX surgery and were treated with cirsilineol (20 mg/kg) to demonstrate the effect of cirsilineol on osteoporosis. RESULTS: Cirsilineol significantly inhibited receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast differentiation in a concentration- and time-dependent manner, respectively. Additionally, cirsilineol inhibited F-actin ring formation, thus reducing the activation of bone resorption ability. Cirsilineol suppressed the expression of osteoclast-related genes and proteins via blocking nuclear factor (NF)-κb, ERK, and p38 signaling cascades. More importantly, cirsilineol treatment in mice with osteoporosis alleviated osteoclasts hyperactivation and bone mass loss caused by estrogen depletion. CONCLUSION: In this study, the protective effect of cirsilineol on osteoporosis has been investigated for the first time. In conclusion, our findings prove the inhibitory effect of cirsilineol on osteoclast activity via NF-κb/ERK/p38 signaling pathways and strongapplication of cirsilineol can be proposed as a potential therapeutic strategy.

8.
Heliyon ; 10(9): e30411, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711642

ABSTRACT

Background: To assess the feasibility of multiparametric magnetic resonance imaging in predicting tumor recurrence in nonenhancing peritumoral regions in patients with glioblastoma at baseline. Methods: Fifty-eight patients with recurrent glioblastoma underwent multiparametric magnetic resonance imaging, including T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast perfusion-weighted imaging. Nonenhancing peritumoral regions with glioblastoma recurrence were identified by coregistering preoperative and post-recurrent magnetic resonance images. Regions of interest were placed in nonenhancing peritumoral regions with and without tumor recurrence to calculate the apparent diffusion coefficient value, and relative ratios of T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and cerebral blood volume values. Results: Significant lower relative T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and relative apparent diffusion coefficient but higher relative cerebral blood volume values were found in the nonenhancing peritumoral regions with tumor recurrence than without recurrence (all P < 0.05). The threshold values ≥ 0.89 for relative cerebral blood volume provide the optimal performance for predicting the nonenhancing peritumoral regions with future tumor recurrence, with the sensitivity, specificity, and accuracy of 84.7%, 83.6%, and 85.8%, respectively. The combination of relative T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and relative cerebral blood volume can provide better predictive performance than relative cerebral blood volume (P = 0.015). Conclusion: The combined use of T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast perfusion-weighted imaging can effectively estimate the risk of future tumor recurrence at baseline.

9.
Anal Cell Pathol (Amst) ; 2024: 8972022, 2024.
Article in English | MEDLINE | ID: mdl-38715918

ABSTRACT

Preeclampsia (PE) manifests as a pregnancy-specific complication arising from compromised placentation characterized by inadequate trophoblast invasion. A growing body of evidence underscores the pivotal involvement of pseudogenes, a subset of long noncoding RNAs, in the pathological processes of PE. This study presents a novel finding, demonstrating a significant downregulation of the pseudogene PDIA3P1 in PE placental tissues compared to normal tissues. In vitro functional assays revealed that suppressing PDIA3P1 hindered trophoblast proliferation, invasion, and migration, concurrently upregulating the expression of secreted frizzled-related protein 1 (SFRP1). Further exploration of the regulatory role of PDIA3P1 in PE, utilizing human trophoblasts, established that PDIA3P1 exerts its function by binding to HuR, thereby enhancing the stability of Snail expression in trophoblasts. Overall, our findings suggest a crucial role for PDIA3P1 in regulating trophoblast properties and contributing to the pathogenesis of PE, offering potential targets for prognosis and therapeutic intervention.


Subject(s)
Down-Regulation , Phenotype , Pre-Eclampsia , RNA, Long Noncoding , Snail Family Transcription Factors , Trophoblasts , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Trophoblasts/metabolism , Trophoblasts/pathology , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Down-Regulation/genetics , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Adult
10.
Hum Gene Ther ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717948

ABSTRACT

Currently, adeno-associated virus (AAV) is one of the primary gene delivery vectors in gene therapy, facilitating long-term in vivo gene expression. Despite being imperative, it is incredibly challenging to precisely assess AAV particle distribution according to the sedimentation coefficient and identify impurities related to capsid structures. This study performed the systematic methodological validation of quantifying the AAV empty and full capsid ratio. This includes specificity, accuracy, precision, linearity, and parameter variables involving the sedimentation velocity analytical ultracentrifugation (SV-AUC) method. Specifically, SV-AUC differentiated among the empty, partial, full, and High Sedimentation Coefficient Substance (HSCS) AAV particles while evaluating their sedimentation heterogeneity. The intermediate precision analysis of HE (high percentage of empty capsid) and HF( high percentage of full capsid) samples revealed that the specific species percentage, such as empty or full, was more significant than 50%. Moreover, the RSD (relative standard deviation) could be within 5%. Even for empty or partial less than 15%, the RSD could be within 10%. The accuracy recovery rates of empty capsid were between 103.9% and 108.7% across three different mixtures. When the measured percentage of specific species was more significant than 14%, the recovery rate was between 77.9% and 106.6%. Linearity analysis revealed an excellent linear correlation between the empty, partial, and full in the HE samples. The AAV samples with as low as 7.4×1011 cp/mL AAV could be accurately quantified with SV-AUC. The parameter variable analyses revealed that variations in cell alignment significantly affected the overall results. Still, the detection wavelength of 235nm slightly influenced the empty, partial, and full percentages. Minor detection wavelength changes showed no impact on the sedimentation coefficient of these species. However, the temperature affected the measured sedimentation coefficient. These results validated the SV-AUC method to quantify AAV. This study provides solutions to AAV empty and full capsid ratio quantification challenges and the subsequent basis for calibrating the AAV empty capsid system suitability substance. Due to the AAV structure and potential variability complexity in detection, we jointly calibrated empty capsid system suitability substance with three laboratories to accurately detect the quantitative AAV empty and full capsid ratio. The empty capsid system suitability substance could be used as an external reference to measure the performance of the instrument. The results could be compared with multiple QC (quality control)laboratories based on the AAV vector and calibration accuracy. This is crucial for AUC to be used for QC release and promote gene therapy research worldwide.

11.
ACS Nano ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726598

ABSTRACT

Porous silicon nanoneedles can interface with cells and tissues with minimal perturbation for high-throughput intracellular delivery and biosensing. Typically, nanoneedle devices are rigid, flat, and opaque, which limits their use for topical applications in the clinic. We have developed a robust, rapid, and precise substrate transfer approach to incorporate nanoneedles within diverse substrates of arbitrary composition, flexibility, curvature, transparency, and biodegradability. With this approach, we integrated nanoneedles on medically relevant elastomers, hydrogels, plastics, medical bandages, catheter tubes, and contact lenses. The integration retains the mechanical properties and transfection efficiency of the nanoneedles. Transparent devices enable the live monitoring of cell-nanoneedle interactions. Flexible devices interface with tissues for efficient, uniform, and sustained topical delivery of nucleic acids ex vivo and in vivo. The versatility of this approach highlights the opportunity to integrate nanoneedles within existing medical devices to develop advanced platforms for topical delivery and biosensing.

12.
J Affect Disord ; 358: 97-104, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703913

ABSTRACT

BACKGROUND: Suicide is a major public health concern, and anxiety is a prevalent developmental challenge in adolescents closely linked to suicidal behavior. This study aimed to assess the association between anxiety in adolescents and subsequent risk of suicidal behavior through a meta-analysis, offering crucial insights for suicide prevention. METHODS: Six bibliographic databases were comprehensively searched to clarify the association between adolescents anxiety and subsequent risk of suicidal behavior. We used a fixed-effects model to determine the total pooled effect size estimate and reported odds ratios and the corresponding 95 % confidence intervals. Subgroup analysis, sensitivity analysis and publication bias analysis were conducted with Stata version 15.1. RESULTS: The findings revealed a significant association between anxiety in adolescents and subsequent suicidal behavior (OR = 2.33, 95 % CI [2.00, 2.71]). Subgroup analyses indicated differences in mean effect size estimates based on clinical diagnoses and self-reported measures used to assess anxiety. The correlation strength between adolescent anxiety and subsequent suicidal behavior increased with a longer follow-up period. Furthermore, adolescents anxiety was associated with increased risk of subsequent suicidal ideation (OR = 1.97, 95 % CI [1.72, 2.25]) and attempts (OR = 3.56, 95 % CI [2.49, 5.07]). Finally, boys (OR = 2.41, 95 % CI [1.67, 3.47]) with anxiety had a greater risk of subsequent suicidal behavior than girls (OR = 2.02, 95 % CI [1.47, 2.78]). CONCLUSION: This study revealed that adolescents anxiety increases the risk of suicidal behavior, including suicidal ideation and attempts. Consequently, there is a critical need for timely interventions tailored to adolescents with anxiety to prevent future instances of suicide.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124295, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38703407

ABSTRACT

Surface-enhanced Raman Spectroscopy (SERS) is extensively implemented in drug detection due to its sensitivity and non-destructive nature. Deep learning methods, which are represented by convolutional neural network (CNN), have been widely applied in identifying the spectra from SERS for powerful learning ability. However, the local receptive field of CNN limits the feature extraction of sequential spectra for suppressing the analysis results. In this study, a hybrid Transformer network, TMNet, was developed to identify SERS spectra by integrating the Transformer encoder and the multi-layer perceptron. The Transformer encoder can obtain precise feature representations of sequential spectra with the aid of self-attention, and the multi-layer perceptron efficiently transforms the representations to the final identification results. TMNet performed excellently, with identification accuracies of 99.07% for the spectra of hair containing drugs and 97.12% for those of urine containing drugs. For the spectra with additive white Gaussian, baseline background, and mixed noises, TMNet still exhibited the best performance among all the methods. Overall, the proposed method can accurately identify SERS spectra with outstanding noise resistance and excellent generalization and holds great potential for the analysis of other spectroscopy data.

14.
ChemSusChem ; : e202400513, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772862

ABSTRACT

The limited yield of H2 production has posed a significant challenge in contemporary research. To address this issue, researchers have turned to the application of surface plasmon resonance (SPR) materials in photocatalytic H2 generation SPR, arising from collective electron oscillations, enhances light absorption and facilitates efficient separation and transfer of electron-hole pairs in semiconductor systems, thereby boosting photocatalytic H2 production efficiency. However, existing reviews predominantly focus on SPR noble metals, neglecting non-noble metals and SPR semiconductors. In this review, we begin by elucidating five different SPR mechanisms, covering hot electron injection, electric field enhancement, light scattering, plasmon-induced resonant energy transfer, and photo-thermionic effect, by which SPR enhances photocatalytic activity. Subsequently, a comprehensive overview follows, detailing the application of SPR materials-metals, non-noble metals, and SPR semiconductors-in photocatalytic H2 production. Additionally, a personal perspective is offered on developing highly efficient SPR-based photocatalysis systems for solar-to-H2 conversion in the future. This review aims to guide the development of next-gen SPR-based materials for advancing solar-to-fuel conversion.

15.
Langmuir ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748644

ABSTRACT

Artificial photosynthesis for high-value hydrogen peroxide (H2O2) through a two-electron reduction reaction is a green and sustainable strategy. However, the development of highly active H2O2 photocatalysts is impeded by severe carrier recombination, ineffective active sites, and low surface reaction efficiency. We developed a dual optimization strategy to load dense Ni nanoparticles onto ultrathin porous graphitic carbon nitride (Ni-UPGCN). In the absence and presence of sacrificial agents, Ni-UPGCN achieved H2O2 production rates of 169 and 4116 µmol g-1 h-1 with AQY (apparent quantum efficiency) at 420 nm of 3.14% and 17.71%. Forming a Schottky junction, the surface-modified Ni nanoparticles broaden the light absorption boundary and facilitate charge separation, which act as active sites, promoting O2 adsorption and reducing the formation energy of *OOH (reaction intermediate). This results in a substantial improvement in both H2O2 generation activity and selectivity. The Schottky junction of dual modulation strategy provides novel insights into the advancement of highly effective photocatalytic agents for the photosynthesis of H2O2.

16.
Heliyon ; 10(7): e28365, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571661

ABSTRACT

Aurora kinase A, as a pro-carcinogenic in gastric cancer and glioma kinase, is enhanced in several human tumors. However, it's regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remains unclear. Thus, this study aimed to investigate the expression status, functional roles, and molecular mechanisms of AURKA in ESCC development. AURKA expression was analyzed by the screening of the GEO database and detected using an immunohistochemical method. The biological function of AURKA on ESCC was evaluated in vitro and in vivo. Western blot assay, malondialdehyde (MDA), iron, and glutathione (GSH) kits were utilized to assess changes in ferroptosis. Database analysis results showed that AURKA was a differential gene in ESCC and was highly expressed in human ESCC tissues. Functionally, AURKA knockdown decreased ESCC cell proliferation, invasion, and metastasis both in vitro and in vivo. Moreover, when AURKA was knockdown, cells were more correctly blocked in the G2/M phase, and the ferroptosis-related MDA and Fe increased, whereas the GSH reduced. Consistently, Glutathione peroxidase 4 (GPX4) and solute carrier family 7a member 11 (SLC7A11) expression were downregulated by AURKA knockdown. However, ferroptosis inhibitor partially restore ESCC cell proliferation, invasion, and metastasis caused by AURKA knockdown. AURKA knockdown enhances ferroptosis and acts against cancer progression in ESCC. AURKA acts as a tumor-promoting gene and may serve as potential target for ESCC treatment.

17.
RSC Adv ; 14(15): 10526-10537, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567335

ABSTRACT

Ca-phosphate/-silicate ceramic granules have been widely studied because their biodegradable fillers can enhance bone defect repair accompanied with bioactive ion release and material degradation; however, it is a challenge to endow bioceramic composites with time-dependent ion release and highly efficient osteogenesis in vivo. Herein, we prepared dual-core-type bioceramic granules with varying chemical compositions beneficial for controlling ion release and stimulating osteogenic capability. Core-shell-structured bioceramic granules (P8-Sr4@Zn3, P8-Sr4@TCP, and P8-Sr4@HAR) composed of 8% P- and 4% Sr-substituting wollastonite (P8, Sr4) dual core components and different shell components, such as 3% Zn-substituting wollastonite (Zn3), ß-tricalcium phosphate (ß-TCP), and hardystonite (HAR), were prepared by cutting extruded core-shell fibers through dual-core ternary nozzles, followed by high-temperature sintering post-treatment. The experimental results showed that nonstoichiometric wollastonite core components contributed to more biologically active ion release in Tris buffer in vitro, and the sparingly dissolvable shell component readily maintained the granule morphology in vivo; thus, such bioceramic implants can adjust new bone growth and material degradation over time. In particular, bioceramic granules encapsulated by the TCP shell exhibited the most appreciable osteogenic capacity and expected biodegradation, which was mostly favorable for bone repair in critical bone defects. It is reasonable to consider that this new multiphasic bioceramic granule design is versatile for developing next-generation implants for various bone damage repairs.

18.
Environ Sci Ecotechnol ; 20: 100404, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38585198

ABSTRACT

Climate change and anthropogenic activities are reshaping dryland ecosystems globally at an unprecedented pace, jeopardizing their stability. The stability of these ecosystems is crucial for maintaining ecological balance and supporting local communities. Yet, the mechanisms governing their stability are poorly understood, largely due to the scarcity of comprehensive field data. Here we show the patterns of community temporal stability and its determinants across an aridity spectrum by integrating a transect survey across China's drylands with remote sensing. Our results revealed a U-shaped relationship between community temporal stability and aridity, with a pivotal shift occurring around an aridity level of 0.88. In less arid areas (aridity level below 0.88), enhanced precipitation and biodiversity were associated with increased community productivity and stability. Conversely, in more arid zones (aridity level above 0.88), elevated soil organic carbon and biodiversity were linked to greater fluctuations in community productivity and reduced stability. Our study identifies a critical aridity threshold that precipitates significant changes in community stability in China's drylands, underscoring the importance of distinct mechanisms driving ecosystem stability in varying aridity contexts. These insights are pivotal for developing informed ecosystem management and policy strategies tailored to the unique challenges of dryland conservation.

19.
Adv Mater ; : e2400950, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581284

ABSTRACT

Mixed conducting materials with both ionic and electronic conductivities have gained prominence in emerging applications. However, exploring material with on-demand ionic and electronic conductivities remains challenging, primarily due to the lack of correlating macroscopic conductivity with atom-scale structure. Here, the correlation of proton-electron conductivity and atom-scale structure in graphdiyne is explored. Precisely adjusting the conjugated diynes and oxygenic functional groups in graphdiyne yields a tunable proton-electron conductivity on the order of 103. In addition, a wet-chemistry lithography technique for uniform preparation of graphdiyne on flexible substrates is provided. Utilizing the proton-electron conductivity and mechanical tolerance of graphdiyne, bimodal flexible devices serving as capacitive switches and resistive sensors are created. As a proof-of-concept, a breath-machine interface for sentence-based communication and self-nursing tasks with an accuracy of 98% is designed. This work represents an important step toward understanding the atom-scale structure-conductivity relationship and extending the applications of mixed conducting materials to assistive technology.

20.
Lancet ; 403(10434): e21-e31, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582569

ABSTRACT

BACKGROUND: Pharmacotherapy provides an option for adults with overweight and obesity to reduce their bodyweight if lifestyle modifications fail. We summarised the latest evidence for the benefits and harms of weight-lowering drugs. METHODS: This systematic review and network meta-analysis included searches of PubMed, Embase, and Cochrane Library (CENTRAL) from inception to March 23, 2021, for randomised controlled trials of weight-lowering drugs in adults with overweight and obesity. We performed frequentist random-effect network meta-analyses to summarise the evidence and applied the Grading of Recommendations Assessment, Development, and Evaluation frameworks to rate the certainty of evidence, calculate the absolute effects, categorise interventions, and present the findings. The study was registered with PROSPERO, CRD 42021245678. FINDINGS: 14 605 citations were identified by our search, of which 132 eligible trials enrolled 48 209 participants. All drugs lowered bodyweight compared with lifestyle modification alone; all subsequent numbers refer to comparisons with lifestyle modification. High to moderate certainty evidence established phentermine-topiramate as the most effective in lowering weight (odds ratio [OR] of ≥5% weight reduction 8·02, 95% CI 5·24 to 12·27; mean difference [MD] of percentage bodyweight change -7·98, 95% CI -9·27 to -6·69) followed by GLP-1 receptor agonists (OR 6·33, 95% CI 5·00 to 8·00; MD -5·79, 95% CI -6·34 to -5·25). Naltrexone-bupropion (OR 2·69, 95% CI 2·10 to 3·44), phentermine-topiramate (2·40, 1·68 to 3·44), GLP-1 receptor agonists (2·22, 1·74 to 2·84), and orlistat (1·71, 1·42 to 2·05) were associated with increased adverse events leading to drug discontinuation. In a post-hoc analysis, semaglutide, a GLP-1 receptor agonist, showed substantially larger benefits than other drugs with a similar risk of adverse events as other drugs for both likelihood of weight loss of 5% or more (OR 9·82, 95% CI 7·09 to 13·61) and percentage bodyweight change (MD -11·40, 95% CI -12·51 to -10·29). INTERPRETATION: In adults with overweight and obesity, phentermine-topiramate and GLP-1 receptor agonists proved the best drugs in reducing weight; of the GLP-1 agonists, semaglutide might be the most effective. FUNDING: 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University.


Subject(s)
Obesity , Overweight , Adult , Humans , Overweight/drug therapy , Network Meta-Analysis , Topiramate/therapeutic use , Obesity/drug therapy , Weight Loss , Phentermine/adverse effects , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...