Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 328
Filter
1.
Heliyon ; 10(11): e31654, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828289

ABSTRACT

Osteoarthritis is a chronic degenerative disease based on the degeneration and loss of articular cartilage. Inflammation and aging play an important role in the destruction of the extracellular matrix, in which microRNA (miRNA) is a key point, such as miRNA-34a-5p. Upregulation of miRNA-34a-5p was previously reported in a rat OA model, and its inhibition significantly suppressed interleukin (IL)-1ß-induced apoptosis in rat chondrocytes. However, Oxidative stress caused by reactive oxygen species (ROS) can exacerbate the progression of miRNA regulated OA by mediating inflammatory processes. Thus, oxidative stress effects induced via tert-butyl hydroperoxide (tBHP) in human chondrocytes were assessed in the current research by evaluating mitochondrial ROS production, mitochondrial cyclooxygenase (COX) activity, and cell apoptosis. We also analyzed the activities of antioxidant enzymes including glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD). Additionally, inflammatory factors, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-8, and IL-24, which contribute to OA development, were detected by enzyme-linked immunosorbent assay (ELISA). The results of this study indicated that miR-34a-5p/silent information regulator 1 (SIRT1)/p53 axis was involved in the ROS-induced injury of human chondrocytes. Moreover, dual-luciferase assay revealed that SIRT1 expression was directly regulated by miR-34a-5p, indicating the presence of a positive feedback loop in the miR-34a-5p/SIRT1/p53 axis that plays an important role in cell survival. However, ROS disrupted the miR-34a-5p/SIRT1/p53 axis, leading to the development of OA, and articular injection of SIRT1 agonist, SRT1720, in a rat model of OA effectively ameliorated OA progression in a dose-dependent manner. Our study confirms that miRNA-34a-5p could participate in oxidative stress responses caused by ROS and further regulate the inflammatory process via the SIRT1/p53 signaling axis, ultimately affecting the onset of OA, thus providing a new treatment strategy for clinical treatment of OA.

2.
ChemSusChem ; : e202400598, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697954

ABSTRACT

It has been known that plastics with undegradability and long half-times have caused serious environmental and ecological issues. Considering the devastating effects, the development of efficient plastic upcycling technologies with low energy consumption is absolutely imperative. Catalytic hydrogenolysis of single-use polyethylene over Ru-based catalysts to produce high-quality liquid fuel has been one of the current top priority strategies, but it is restricted by some tough challenges, such as the tendency towards methanation resulting from terminal C-C cleavage. Herein, we introduced Ru nanoparticles supported on hollow ZSM-5 zeolite (Ru/H-ZSM-5) for hydrocracking of high-density polyethylene (HDPE) under mild reaction conditions. The implication of experimental results is that the 1Ru/H-ZSM-5 (~1wt% Ru) acted as an effective and reusable bifunctional catalyst providing higher conversion rate (84.30%) and liquid fuel (C5-C21) yield (62.77%). Detailed characterization demonstrated that the optimal performance in hydrocracking of PE could be attributed to the moderate acidity and appropriate positively charged Ru species resulting from the metal-zeolite interaction. This work proposes a promising catalyst for plastic upcycling and reveals its structure-performance relationship, which has guiding significance for catalyst design to improve the yield of high-value liquid fuels.

4.
Pest Manag Sci ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738508

ABSTRACT

BACKGROUND: Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS: The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION: This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

5.
Biomater Adv ; 161: 213893, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796955

ABSTRACT

Angiogenesis plays a crucial role in bone regeneration. Hypoxia is a driving force of angiogenesis at the initial stage of tissue repair. The hypoxic microenvironment could activate the hypoxia-inducible factor (HIF)-1α signaling pathway in cells, thereby enhancing the proliferation, migration and pro-angiogenic functions of stem cells. However, long-term chronic hypoxia could inhibit osteogenic differentiation and even lead to apoptosis. Therefore, shutdown of the HIF-1α signaling pathway and providing oxygen at later stage probably facilitate osteogenic differentiation and bone regeneration. Herein, an oxygen tension regulating hydrogel that sequentially activate and deactivate the HIF-1α signaling pathway were prepared in this study. Its effect and mechanism on stem cell differentiation were investigated both in vitro and in vivo. We proposed a gelatin-based hydrogel capable of sequentially delivering a hypoxic inducer (copper ions) and oxygen generator (calcium peroxide). The copper ions released from the hydrogels significantly enhanced cell viability and VEGF secretion of BMSCs via upregulating HIF-1α expression and facilitating its translocation into the nucleus. Additionally, calcium peroxide promoted alkaline phosphatase activity, osteopontin secretion, and calcium deposition through the activation of ERK1/2. Both Cu2+ and calcium peroxide demonstrated osteogenic promotion individually, while their synergistic effect within the hydrogels led to a superior osteogenic effect by potentially activating the HIF-1α and ERK1/2 signaling pathways.


Subject(s)
Bone Regeneration , Hydrogels , Hypoxia-Inducible Factor 1, alpha Subunit , MAP Kinase Signaling System , Mesenchymal Stem Cells , Neovascularization, Physiologic , Osteogenesis , Oxygen , Hydrogels/pharmacology , Hydrogels/chemistry , Osteogenesis/drug effects , Osteogenesis/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Bone Regeneration/drug effects , Animals , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Oxygen/metabolism , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Gelatin , Cell Survival/drug effects , Signal Transduction/drug effects , Peroxides
6.
Int J Biol Macromol ; 269(Pt 1): 131914, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703527

ABSTRACT

The healing of critical-sized bone defects is a major challenge in the field of bone tissue engineering. Gelatin-related hydrogels have emerged as a potential solution due to their desirable properties. However, their limited osteogenic, mechanical, and reactive oxygen species (ROS)-scavenging capabilities have hindered their clinical application. To overcome this issue, we developed a biofunctional gelatin-Mxene nanocomposite hydrogel. Firstly, we prepared two-dimensional (2D) Ti3C2 MXene nanosheets using a layer delamination method. Secondly, these nanosheets were incorporated into a transglutaminase (TG) enzyme-containing gallic acid-imbedded gelatin (GGA) pre-gel solution to create an injectable GGA-MXene (GM) nanocomposite hydrogel. The GM hydrogels exhibited superior compressive strength (44-75.6 kPa) and modulus (24-44.5 kPa) compared to the GGA hydrogels. Additionally, the GM hydrogel demonstrated the ability to scavenge reactive oxygen species (OH- and DPPH radicals), protecting MC3T3-E1 cells from oxidative stress. GM hydrogels were non-toxic to MC3T3-E1 cells, increased alkaline phosphatase secretion, calcium nodule formation, and upregulated osteogenic gene expressions (ALP, OCN, and RUNX2). The GM400 hydrogel was implanted in critical-sized calvarial defects in rats. Remarkably, it exhibited significant potential for promoting new bone formation. These findings indicated that GM hydrogel could be a viable candidate for future clinical applications in the treatment of critical-sized bone defects.


Subject(s)
Gelatin , Hydrogels , Nanocomposites , Osteogenesis , Reactive Oxygen Species , Skull , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Gelatin/chemistry , Nanocomposites/chemistry , Osteogenesis/drug effects , Reactive Oxygen Species/metabolism , Skull/drug effects , Skull/pathology , Mice , Rats , Bone Regeneration/drug effects , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Titanium/chemistry , Cell Line , Tissue Engineering/methods
7.
Nanomaterials (Basel) ; 14(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38535701

ABSTRACT

Osteoporotic fractures are induced by osteoporosis, which may lead to the degradation of bone tissues and microstructures and impair their healing ability. Conventional internal fixation therapies are ineffective in the treatment of osteoporotic fractures. Hence, developing tissue engineering materials is crucial for repairing osteoporotic fractures. It has been demonstrated that nanomaterials, particularly graphene oxide (GO), possess unique advantages in tissue engineering due to their excellent biocompatibility, mechanical properties, and osteoinductive abilities. Based on that, GO-nanocomposites have garnered significant attention and hold promising prospects for bone repair applications. This paper provides a comprehensive insight into the properties of GO, preparation methods for nanocomposites, advantages of these materials, and relevant mechanisms for osteoporotic fracture applications.

8.
Angew Chem Int Ed Engl ; 63(20): e202403260, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38503695

ABSTRACT

The poisoning of undesired intermediates or impurities greatly hinders the catalytic performances of noble metal-based catalysts. Herein, high-entropy intermetallics i-(PtPdIrRu)2FeCu (HEI) are constructed to inhibit the strongly adsorbed carbon monoxide intermediates (CO*) during the formic acid oxidation reaction. As probed by multiple-scaled structural characterizations, HEI nanoparticles are featured with partially negative Pt oxidation states, diluted Pt/Pd/Ir/Ru atomic sites and ultrasmall average size less than 2 nm. Benefiting from the optimized structures, HEI nanoparticles deliver more than 10 times promotion in intrinsic activity than that of pure Pt, and well-enhanced mass activity/durability than that of ternary i-Pt2FeCu intermetallics counterpart. In situ infrared spectroscopy manifests that both bridge and top CO* are favored on pure Pt but limited on HEI. Further theoretical elaboration indicates that HEI displayed a much weaker binding of CO* on Pt sites and sluggish diffusion of CO* among different sites, in contrast to pure Pt that CO* bound more strongly and was easy to diffuse on larger Pt atomic ensembles. This work verifies that HEIs are promising catalysts via integrating the merits of intermetallics and high-entropy alloys.

9.
Adv Mater ; 36(21): e2312773, 2024 May.
Article in English | MEDLINE | ID: mdl-38349072

ABSTRACT

Constructing large-area artificial solid electrolyte interphase (SEI) to suppress Li dendrites growth and electrolyte consumption is essential for high-energy-density Li metal batteries (LMBs). Herein, chemically exfoliated ultrathin MoS2 nanosheets (EMoS2) as an artificial SEI are scalable transfer-printed on Li-anode (EMoS2@Li). The EMoS2 with a large amount of sulfur vacancies and 1T phase-rich acts as a lithiophilic interfacial ion-transport skin to reduce the Li nucleation overpotential and regulate Li+ flux. With favorable Young's modulus and homogeneous continuous layered structure, the proposed EMoS2@Li effectively suppresses the growth of Li dendrites and repeat breaking/reforming of the SEI. As a result, the assembled EMoS2@Li||LiFePO4 and EMoS2@Li||LiNi0.8Co0.1Mn0.1O2 batteries demonstrate high-capacity retention of 93.5% and 92% after 1000 cycles and 300 cycles, respectively, at ultrahigh cathode loading of 20 mg cm-2. Ultrasonic transmission technology confirms the admirable ability of EMoS2@Li to inhibit Li dendrites in practical pouch batteries. Remarkably, the Ah-class EMoS2@Li||LiNi0.8Co0.1Mn0.1O2 pouch battery exhibits an energy density of 403 Wh kg-1 over 100 cycles with the low negative/positive capacity ratio of 1.8 and electrolyte/capacity ratio of 2.1 g Ah-1. The strategy of constructing an artificial SEI by sulfur vacancies-rich and 1T phase-rich ultrathin MoS2 nanosheets provides new guidance to realize high-energy-density LMBs with long cycling stability.

10.
Sci Total Environ ; 922: 171171, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38402971

ABSTRACT

The relationship between plant diversity and the ecosystem carbon pool is important for understanding the role of biodiversity in regulating ecosystem functions. However, it is not clear how the relationship between plant diversity and soil carbon content changes under different grassland use patterns. In a 3-year study from 2013 to 2015, we investigated plant diversity and soil total carbon (TC) content of grasslands in northern China under different grassland utilization methods (grazing, mowing, and enclosure) and climatic conditions. Shannon-Wiener and Species richness index of grassland were significantly decreased by grazing and mowing. Plant diversity was positively correlated with annual precipitation (AP) and negatively correlated with annual mean temperature (AMT). AP was the primary regulator of plant diversity. Grazing and mowing decreased TC levels in grasslands compared with enclosures, especially in topsoil (0-20 cm). The average TC content was decreased by 58 % and 36 % in the 0-10 cm soil layer, while it was decreased by 68 % and 39 % in 10-20 cm soil layer. TC was positively correlated with AP and negatively correlated with AMT. Principal component analysis (PCA) showed that plant diversity was positively correlated with soil TC, and the correlation decreased with an increase in the soil depth. Overall, this study provides a theoretical basis for predicting soil carbon storage in grasslands under human disturbances and climate change impacts.


Subject(s)
Ecosystem , Grassland , Humans , Biomass , Soil , China , Plants , Carbon/analysis
11.
Water Res ; 252: 121247, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38335751

ABSTRACT

Greening is the optimal way to mitigate climate change and water quality degradation caused by agricultural expansion and rapid urbanization. However, the ideal sites to plant trees or grass to achieve a win-win solution between the environment and the economy remain unknown. Here, we performed a nationwide survey on groundwater nutrients (nitrate nitrogen, ammonia nitrogen, dissolved reactive phosphorus) and heavy metals (vanadium, chromium, manganese, iron, cobalt, nickel, copper, arsenic, strontium, molybdenum, cadmium, and lead) in China, and combined it with the global/national soil property database and machine learning (random forest) methods to explore the linkages between land use within hydrologically sensitive areas (HSAs) and groundwater quality from the perspective of hydrological connectivity. We found that HSAs occupy approximately 20 % of the total land area and are hotspots for transferring nutrients and heavy metals from the land surface to the saturated zone. In particular, the proportion of natural lands within HSAs significantly contributes 8.0 % of the variability in groundwater nutrients and heavy metals in China (p < 0.01), which is equivalent to their contribution (8.8 %) at the regional scale (radius = 4 km, area = 50 km2). Increasing the proportion of natural lands within HSAs improves groundwater quality, as indicated by the significant reduction in the concentrations of nitrate nitrogen, manganese, arsenic, strontium, and molybdenum (p < 0.05). These new findings suggest that prioritizing ecological restoration in HSAs is conducive to achieving the harmony between the environment (improving groundwater quality) and economy (reducing investment in area management).


Subject(s)
Arsenic , Groundwater , Metals, Heavy , Manganese , Molybdenum , Nitrates/analysis , Metals, Heavy/analysis , Strontium , Organic Chemicals , Nitrogen/analysis , Environmental Monitoring/methods
12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(1): 119-124, 2024 Jan 15.
Article in Chinese | MEDLINE | ID: mdl-38225851

ABSTRACT

Objective: To summarize the research progress on the role of macrophage-mediated osteoimmune in osteonecrosis of the femoral head (ONFH) and its mechanisms. Methods: Recent studies on the role and mechanism of macrophage-mediated osteoimmune in ONFH at home and abroad were extensively reviewed. The classification and function of macrophages were summarized, the osteoimmune regulation of macrophages on chronic inflammation in ONFH was summarized, and the pathophysiological mechanism of osteonecrosis was expounded from the perspective of osteoimmune, which provided new ideas for the treatment of ONFH. Results: Macrophages are important immune cells involved in inflammatory response, which can differentiate into classically activated type (M1) and alternatively activated type (M2), and play specific functions to participate in and regulate the physiological and pathological processes of the body. Studies have shown that bone immune imbalance mediated by macrophages can cause local chronic inflammation and lead to the occurrence and development of ONFH. Therefore, regulating macrophage polarization is a potential ONFH treatment strategy. In chronic inflammatory microenvironment, inhibiting macrophage polarization to M1 can promote local inflammatory dissipation and effectively delay the progression of ONFH; regulating macrophage polarization to M2 can build a local osteoimmune microenvironment conducive to bone repair, which is helpful to necrotic tissue regeneration and repair to a certain extent. Conclusion: At present, it has been confirmed that macrophage-mediated chronic inflammatory immune microenvironment is an important mechanism for the occurrence and development of ONFH. It is necessary to study the subtypes of immune cells in ONFH, the interaction between immune cells and macrophages, and the interaction between various immune cells and macrophages, which is beneficial to the development of potential therapeutic methods for ONFH.


Subject(s)
Femur Head Necrosis , Osteonecrosis , Humans , Femur Head/pathology , Osteonecrosis/therapy , Macrophages/pathology , Inflammation , Femur Head Necrosis/pathology
13.
Chembiochem ; 25(4): e202300656, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38180305

ABSTRACT

Cytidine and uridine are two essential pyrimidine ribonucleotides, and accurate detection of these nucleosides holds significant biological importance. While many aptamers were reported to bind purines, little success was achieved for pyrimidine binding. This study employs the library-immobilization capture-SELEX technique to isolate aptamers capable of selectively binding to cytidine and uridine. First, a selection was performed using a mixture of cytidine and uridine as the target. This selection led to the isolation of a highly selective aptamer for cytidine with a dissociation constant (Kd ) of 0.9 µM as determined by isothermal titration calorimetry (ITC). In addition, a dual-recognition aptamer was also discovered, which exhibited selective binding to both cytidine and uridine. Subsequently, a separate selection was carried out using uridine as the sole target, and the resulting uridine aptamer displayed a Kd of 4 µM based on a thioflavin T fluorescence assay and a Kd of 102 µM based on ITC. These aptamers do not have a strict requirement of metal ions for binding, and they showed excellent selectivity since no binding was observed with their nucleobases or nucleotides. This study has resulted three aptamers for pyrimidines, which can be employed in biosensors and DNA switches.


Subject(s)
Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , Uridine , Cytidine , SELEX Aptamer Technique/methods , DNA
14.
Angew Chem Int Ed Engl ; 63(5): e202315148, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38078596

ABSTRACT

Tracking the trajectory of hydrogen intermediates during hydrogen electro-catalysis is beneficial for designing synergetic multi-component catalysts with division of chemical labor. Herein, we demonstrate a novel dynamic lattice hydrogen (LH) migration mechanism that leads to two orders of magnitude increase in the alkaline hydrogen oxidation reaction (HOR) activity on Pd@Pt over pure Pd, even ≈31.8 times mass activity enhancement than commercial Pt. Specifically, the polarization-driven electrochemical hydrogenation process from Pd@Pt to PdHx @Pt by incorporating LH allows more surface vacancy Pt sites to increase the surface H coverage. The inverse dehydrogenation process makes PdHx as an H reservoir, providing LH migrates to the surface of Pt and participates in the HOR. Meanwhile, the formation of PdHx induces electronic effect, lowering the energy barrier of rate-determining Volmer step, thus resulting in the HOR kinetics on Pd@Pt being proportional to the LH concentration in the in situ formed PdHx @Pt. Moreover, this dynamic catalysis mechanism would open up the catalysts scope for hydrogen electro-catalysis.

15.
J Environ Manage ; 351: 119600, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042077

ABSTRACT

Body size is closely related to the trophic level and abundance of soil fauna, particularly nematodes. Therefore, size-based analyses are increasingly prominent in unveiling soil food web structure and its responses to anthropogenic disturbances, such as livestock grazing. Yet, little is known about the effects of different livestock on the body size structure of soil nematodes, especially in grasslands characterized by local habitat heterogeneity. A four-year field grazing experiment from 2017 to 2020 was conducted in a meadow steppe characterized by typical mosaics of degraded hypersaline patches and undegraded hyposaline patches to assess the impacts of cattle and sheep grazing on the body size structure of soil nematodes within and across trophic groups. Without grazing, the hypersaline patches harbored higher abundance of large-bodied nematodes in the community compared to the hyposaline patches. Livestock grazing decreased large-bodied nematodes within and across trophic groups mainly by reducing soil microbial biomass in the hypersaline patches, with sheep grazing resulting in more substantial reductions compared to cattle grazing. The reduction in large-bodied nematode individuals correspondingly resulted in decreases in nematode community-weighted mean (CWM) body size, nematode biomass, and size spectra slopes. However, both cattle and sheep grazing had minimal impacts on the CWM body size and size spectra of total nematodes in the hyposaline patches. Our findings suggest that livestock grazing, especially sheep grazing, has the potential to simplify soil food webs by reducing large-bodied nematodes in degraded habitats, which may aggravate soil degradation by weakening the bioturbation activities of soil fauna. In light of the widespread land use of grasslands by herbivores of various species and the ongoing global grassland degradation of mosaic patches, the recognition of the trends revealed by our findings is critical for developing appropriate strategies for grassland grazing management.


Subject(s)
Grassland , Nematoda , Animals , Cattle , Sheep , Soil , Livestock , Ecosystem , Body Size
16.
Environ Sci Pollut Res Int ; 31(4): 6082-6093, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147242

ABSTRACT

The research delved into the occurrence and dynamics of dissolved metals, specifically manganese (Mn) and copper (Cu), within the Jiulong River Estuary, South China, a medium-sized subtropical estuary. Our findings unveiled a nuanced seasonal and spatial variability of dissolved metals throughout the entire estuarine system. Notably, dissolved Mn concentrations peaked (~ 3.5 µM) in the upper estuary, diminishing sharply along the salinity gradient, with a modest rise in the middle estuary and outer Xiamen Bay. In the upper estuary, heightened concentrations of dissolved Mn occurred in spring due to augmented terrestrial particle inputs, followed by suboxically reductive releases; conversely, concentrations were low in summer, attributed to dilution from increased freshwater discharges and particle scavenging. In contrast, dissolved Cu exhibited differently, with elevated concentrations (29.2-37.5 nM) in the upper and middle estuaries, driven by reductive dissolution of Mn particles and chloride-induced ion exchanges, respectively. Concurrently, heightened inputs of nutrients and metals correlated with elevated phytoplankton productivity (indicated by chlorophyll a) in the upper and outer estuary regions. Our analysis underscored the sensitivity of dissolved metals to environmental parameters, including temperature, pH, and dissolved oxygen. The integration of compiled historical data underscored the dynamic nature of dissolved metals, particularly Cu, in response to geochemical processes.The elevated ion levels indicated intensified ion releases from particles and sediments, attributable to increased anthropogenic perturbation and climatic changes (e. g. ocean warming).


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Manganese/analysis , Metals, Heavy/analysis , Estuaries , Chlorophyll A/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Rivers , China , Geologic Sediments
17.
Angew Chem Int Ed Engl ; 63(6): e202314450, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38150561

ABSTRACT

Previous aptamers for porphyrins and metalloporphyrins were all guanine-rich sequences that can fold in G-quadruplex structures. Due to stacking-based binding, these aptamers can hardly tell different porphyrins apart, and they can also bind other planar molecules, hindering their practical applications. In this work, we used the capture selection method to obtain aptamers for hemin and protoporphyrin IX (PPIX). The hemin aptamer (Hem1) features two highly conserved repeating binding loops, and it cannot form a G-quadruplex, which was supported by its Mg2+ -dependent but K+ -independent hemin binding and CD spectroscopy. Isothermal titration calorimetry revealed much higher enthalpy change for the new aptamer, and the best aptamer showed a Kd of 43 nM hemin. Hem1 can also enhance the peroxidase-like activity of hemin. This work demonstrates that aptamers have alternative ways to bind porphyrins allowing selective recognition of different porphyrins.


Subject(s)
Aptamers, Nucleotide , G-Quadruplexes , Porphyrins , Hemin/chemistry , Aptamers, Nucleotide/chemistry , Porphyrins/metabolism , Peroxidases/metabolism
18.
Mar Environ Res ; 193: 106297, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096713

ABSTRACT

Protoporphyrin IX (PPIX), a key precursor for the synthesis of chlorophyll and heme, is fundamental to photosynthetic eukaryotic cells and participates in light absorption, energy transduction, and numerous other cellular metabolic activities. Along with the application of genetic and biochemical techniques over the past few years, our understanding of the formation of PPIX has been largely advanced, especially regarding possible metabolic pathways. However, the ecological role and function of PPIX in natural ecosystems remains unclear. We have previously established a method for quantifying PPIX in marine ecosystems. Here, our results provide evidence that PPIX is not only subtly linked to nutrient uptake but also triggers phytoplankton productivity. PPIX and its derivatives are dynamic spatiotemporally in direct response to increased nutrient availability. Using 16 S rRNA gene amplicon sequencing, PPIX was revealed to interact strongly with many microorganisms, indicating that PPIX serves as a critical metabolite in maintaining microbial metabolism and community development. In summary, we observed that PPIX is linearly related to nutrient availability and microbial diversity. The levels of microbial PPIX reflect ecological health, and the availability of PPIX and nutrients jointly affect microbial community composition.


Subject(s)
Ecosystem , Protoporphyrins , Protoporphyrins/genetics , Protoporphyrins/metabolism , Heme/metabolism
19.
Microbiome ; 11(1): 270, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38049915

ABSTRACT

BACKGROUND: Active hydrothermal vents create extreme conditions characterized by high temperatures, low pH levels, and elevated concentrations of heavy metals and other trace elements. These conditions support unique ecosystems where chemolithoautotrophs serve as primary producers. The steep temperature and pH gradients from the vent mouth to its periphery provide a wide range of microhabitats for these specialized microorganisms. However, their metabolic functions, adaptations in response to these gradients, and coping mechanisms under extreme conditions remain areas of limited knowledge. In this study, we conducted temperature gradient incubations of hydrothermal fluids from moderate (pH = 5.6) and extremely (pH = 2.2) acidic vents. Combining the DNA-stable isotope probing technique and subsequent metagenomics, we identified active chemolithoautotrophs under different temperature and pH conditions and analyzed their specific metabolic mechanisms. RESULTS: We found that the carbon fixation activities of Nautiliales in vent fluids were significantly increased from 45 to 65 °C under moderately acidic condition, while their heat tolerance was reduced under extremely acidic conditions. In contrast, Campylobacterales actively fixed carbon under both moderately and extremely acidic conditions under 30 - 45 °C. Compared to Campylobacterales, Nautiliales were found to lack the Sox sulfur oxidation system and instead use NAD(H)-linked glutamate dehydrogenase to boost the reverse tricarboxylic acid (rTCA) cycle. Additionally, they exhibit a high genetic potential for high activity of cytochrome bd ubiquinol oxidase in oxygen respiration and hydrogen oxidation at high temperatures. In terms of high-temperature adaption, the rgy gene plays a critical role in Nautiliales by maintaining DNA stability at high temperature. Genes encoding proteins involved in proton export, including the membrane arm subunits of proton-pumping NADH: ubiquinone oxidoreductase, K+ accumulation, selective transport of charged molecules, permease regulation, and formation of the permeability barrier of bacterial outer membranes, play essential roles in enabling Campylobacterales to adapt to extremely acidic conditions. CONCLUSIONS: Our study provides in-depth insights into how high temperature and low pH impact the metabolic processes of energy and main elements in chemolithoautotrophs living in hydrothermal ecosystems, as well as the mechanisms they use to adapt to the extreme hydrothermal conditions. Video Abstract.


Subject(s)
Epsilonproteobacteria , Hydrothermal Vents , Ecosystem , Temperature , Protons , Carbon/metabolism , DNA , Hydrothermal Vents/microbiology , Phylogeny
20.
Nano Lett ; 23(23): 10765-10771, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37963268

ABSTRACT

High-entropy alloy (HEA) nanoparticles (NPs) have been emerging with superior compositional tunability and multielemental synergy, presenting a unique platform for material discovery and performance optimization. Here we report a synthetic approach utilizing hollow-carbon confinement in the ordinary furnace annealing to achieve the nonequilibrium HEA-NPs such as Pt0.45Fe0.18Co0.12Ni0.15Mn0.10 with uniform size ∼5.9 nm. The facile temperature control allows us not only to reveal the detailed reaction pathway through ex situ characterization but also to tailor the HEA-NP structure from the crystalline solid solution to intermetallic. The preconfinement of metal precursors is the key to ensure the uniform distribution of metal nanoparticles with confined volume, which is essential to prevent the thermodynamically favored phase separation even during the ordinary furnace annealing. Besides, the synthesized HEA-NPs exhibit remarkable activity and stability in oxygen reduction catalysis. The demonstrated synthetic approach may significantly expand the scope of HEA-NPs with uncharted composition and performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...