Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; : 1-7, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733627

ABSTRACT

Many marine organisms possess an essential capacity to produce secondary metabolites that exhibit toxic characteristics. A new polyhydroxy steroid, 24-methyl-5α-cholestane-24(28)-ene-3ß, 4ß, 6α, 7α, 8, 15ß, 16ß, 26-octol-6-O-sodium sulphate (1) was isolated from starfish (Asterina pectinifera), along with five polar steroid compounds (2-6) that were previously identified. NMR (1H and 13C NMR, 1H-1H COSY, HSQC, HMBC, and NOESY) and HR-ESI-MS were employed for structure elucidations. The embryotoxicity and teratogenicity of the isolated compounds were assessed using embryos of marine medaka (Oryzias melastigma). Compound 5 exhibited moderate embryotoxicity (96h-LC50: 65 µM).

2.
Mar Pollut Bull ; 199: 116008, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171162

ABSTRACT

We employed a validated method to assess the seasonal variation and distribution of caffeine in the Bohai and Yellow Seas, as well as in Yantai urban estuaries and offshore region in northern China. Caffeine concentrations were highest during the summer in the Yellow Sea (1436.4 ng/L) and lowest in the Yantai urban offshore region during the spring and autumn and in the Yantai urban estuarine area and Bohai Sea during the winter (0.1 ng/L). There was significant variation in maximum caffeine levels among seasons across all regions examined, reaching a difference of 5980.5 times at the same sampling site between summer and winter. The caffeine concentration in the Yantai offshore region was significantly higher than in the Bohai and Yellow Seas. This study is the first investigation of seasonal fluctuations in the pollution levels of neurotoxic substances in the northern seas of China.


Subject(s)
Caffeine , Estuaries , Seasons , Oceans and Seas , Climate , China , Environmental Monitoring/methods
3.
Chemosphere ; 345: 140505, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866493

ABSTRACT

With the rapid development of aquaculture, the production of oyster shells has surged, posing a potential threat to the environment. While oyster shell powder is widely recognized for its inherent alkalinity and rich calcium carbonate content, making it a superior soil conditioner, its role in organic solid waste composting remains underexplored. To investigate the effects of varying concentrations of oyster shell powder on compost maturation and calcium activation, this study employed thermophilic co-composting with acidic sugar residue and bean pulp, incorporating 0% (control), 10% (T1), 20% (T2), 30% (T3), and 40% (T4) oyster shell powder. Findings revealed that appropriate proportions of oyster shell powder significantly enhance temperature stability during composting and elevate maturation levels, notably reducing ammonia emissions between 62.5% and 76.7%. Intriguingly, the calcium in the oyster shell powder was significantly activated during composting, with the 40% addition group achieving the highest calcium activation rate of 48.5%. In summation, the inclusion of oyster shell powder not only optimizes the composting process but also efficiently activates the calcium, resulting in an alkaline organic-inorganic composite soil conditioner with high exchangeable calcium content. This research holds significant implications for promoting the high-value utilization of oyster shells.


Subject(s)
Composting , Ostreidae , Animals , Solid Waste , Calcium , Powders , Soil/chemistry , Calcium Carbonate , Calcium, Dietary
4.
Toxics ; 11(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37112597

ABSTRACT

Dinoflagellates of the genus Amphidinium can produce a variety of polyketides, such as amphidinols (AMs), amphidinoketides, and amphidinin, that have hemolytic, cytotoxic, and fish mortality properties. AMs pose a significant threat to ecological function due to their membrane-disrupting and permeabilizing properties, as well as their hydrophobicity. Our research aims to investigate the disparate distribution of AMs between intracellular and extracellular environments, as well as the threat that AMs pose to aquatic organisms. As a result, AMs containing sulphate groups such as AM19 with lower bioactivity comprised the majority of A. carterae strain GY-H35, while AMs without sulphate groups such as AM18 with higher bioactivity displayed a higher proportion and hemolytic activity in the extracellular environment, suggesting that AMs may serve as allelochemicals. When the concentration of extracellular crude extracts of AMs reached 0.81 µg/mL in the solution, significant differences in zebrafish embryonic mortality and malformation were observed. Over 96 hpf, 0.25 µL/mL of AMs could cause significant pericardial edema, heart rate decrease, pectoral fin deformation, and spinal deformation in zebrafish larvae. Our findings emphasized the necessity of conducting systematic research on the differences between the intracellular and extracellular distribution of toxins to gain a more accurate understanding of their effects on humans and the environment.

5.
J Hazard Mater ; 445: 130570, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37055976

ABSTRACT

This study investigated the behavior of veterinary antibiotics (VAs) in a small farm ecosystem. Manure and environmental samples were collected around a large pig farm in northeast China. Thirty-four VAs in six categories were analyzed. Then, a multimedia fugacity model was used to estimate the fates of VAs in the environment. The results showed that VAs were prevalent in manure, soil, water, and sediment, but not in crops. Compared with fresh manure, VA levels were significantly lower in surface manure piles left in the open air for 3-6 months. The main VAs, tetracyclines and quinolones, decreased by 427.12 and 158.45 µg/kg, respectively. VAs from manure piles were transported to the surroundings and migrated vertically into deep soil. The concentrations of ∑VAs detected in agricultural soils were 0.03-4.60 µg/kg; > 94% of the mass inventory of the VAs was retained in soil organic matter (SOM), suggesting that SOM is the main reservoir for antibiotics in soil. Risk assessment and model analysis indicated that the negative impact of mixed antibiotics at low concentrations in farmland on crops may be mediated by indirect effects, rather than direct effects. Our findings highlight the environmental fates and risks of antibiotics from livestock farms.


Subject(s)
Anti-Bacterial Agents , Environmental Monitoring , Soil Pollutants , Veterinary Drugs , Animals , Anti-Bacterial Agents/analysis , China , Crops, Agricultural , Ecosystem , Environmental Monitoring/methods , Farms , Manure/analysis , Soil , Soil Pollutants/analysis , Swine , Veterinary Drugs/analysis
6.
Sci Total Environ ; 834: 155361, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35460793

ABSTRACT

Organophosphate esters (OPEs) in the environment have been the focus of increasing attention due to their ubiquity and potential toxicity. However, there is little information on the occurrence and characteristics of OPEs in rural areas, especially those with cold year-round temperatures and frozen soil in winter. In this study, environmental samples were collected, in summer and winter, from villages and towns in Northeast China differing in the types and intensities of their anthropogenic activities. The samples were analyzed for 12 OPEs. The results showed the widespread presence of alkyl-OPEs, Cl-OPEs, and aryl-OPEs in the water, soil, snow, and ice of the study sites. In summer, tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) were the primary compounds in water and soil, respectively. The ∑12OPE concentration in three villages varied from 46.26 to 257.37 ng/L in water, and from 6.62 to 19.46 ng/g in soils. The ∑12OPE concentrations in water were lower in winter than summer, but conversely, ∑12OPE concentrations in frozen soils in winter were higher than those in soils in summer. In winter, there was a shift in the predominant OPEs in water and frozen soils, with dominance of TCEP and complex compounds, respectively. Obvious seasonal characteristics of the potential sources and ecological risks of OPEs in these areas were also determined, with more complex sources of OPEs seen in summer than winter. In summer, only 2-ethylhexyl diphenyl phosphate (EHDPP) in water posed a potential risk, while in summer and, especially, in winter, EHDPP and tris(2-ethylhexyl) phosphate posed potential risks in soils. The high ∑12OPE concentration in snow (56.77 ng/L) implied that wet deposition can amplify OPEs in other environmental compartments. This is the first systematic report on OPEs in a cold rural area. Our findings highlight the need for seasonal monitoring of OPEs in similar areas.


Subject(s)
Flame Retardants , China , Environmental Monitoring/methods , Esters , Flame Retardants/analysis , Organophosphates , Phosphates , Seasons , Soil , Water
7.
Chemosphere ; 290: 133324, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34921857

ABSTRACT

The photo-Fenton reaction was widely used in the removal of pollutants in waste water, which makes it exhibit great potential in the field of environmental remediation. Hence, it is crucial to explore a new efficient and stable photo-Fenton catalyst driven by visible light. In this work, a simple two-step calcination method was used to synthesize sheet-like stacked Ultra-thin g-C3N4/FeOCl (CNF) materials. The morphology, composition, photo-Fenton performance, and antibacterial properties were systematically analyzed. Research results exhibited that the synthesized CNF catalysts showed enhanced visible light absorption capacity and excellent photo-Fenton performance. Compared with FeOCl alone, CNF displayed stronger degradation ability for rhodamine B (RhB) and could achieve 97% degradation within 9 min, which was about 10 times that of pure FeOCl. At the same time, the composite catalysts exhibited excellent antibacterial effects under photo-Fenton conditions. The antibacterial rate of CNF composite catalyst under photo-Fenton conditions can reach almost 99%, which was 3 times that of photocatalysis alone and 2 times that of Fenton alone. The heterojunction formed between Ultra-thin g-C3N4 and FeOCl promoted the separation of e- and h+. Simultaneously, the presence of e- promoted the cycle of Fe3+ and Fe2+ in FeOCl, thereby promoting the generation of hydroxyl radicals (OH) from H2O2 and improving the photo-Fenton activity to achieve the effect of degrading pollutants and antibacterial. The photo-Fenton catalysis and degradation mechanism were analyzed in detail. This work provided a theoretical basis for the application of CNF material in the removal of wastewater.


Subject(s)
Environmental Pollutants , Nanocomposites , Anti-Bacterial Agents/pharmacology , Catalysis , Hydrogen Peroxide , Light
8.
Water Sci Technol ; 84(3): 499-511, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34388115

ABSTRACT

Photocathodic protection is an economical and environmental metal anticorrosion method. In this research, we successfully synthesized the g-C3N4/GO (15 wt%)/MoS2 catalytic materials by a facile hydrothermal method. The results show that the as-prepared g-C3N4/GO (15 wt%)/MoS2 composites prominently enhanced photocatalytic activities for the photocathodic protection of 304 stainless steel (SS) compared with the corresponding pristine g-C3N4 and MoS2. Notably, the AC impedance results demonstrated that the Rct value of 304 SS coupled with g-C3N4/GO (15 wt%)/MoS2 decreased to 35.66 Ω•cm2, which is 29 and 37 times lower than that of g-C3N4 and MoS2 alone. In addition, g-C3N4/GO (15 wt%)/MoS2 provided the highest current density (77.19 µA•cm2) for the 304 SS, which is four times that of pristine g-C3N4. All results indicate that as-prepared g-C3N4/GO (15 wt%)/MoS2 photocatalysts have produced a distinct enhancement on photocathodic protection performance. An optimum decorating amount of MoS2 onto g-C3N4 forms heterojunctions of g-C3N4/MoS2, which favor the separation of electrons and holes efficiently. Furthermore, the addition of GO further promotes the separation and transfer of photo-induced carriers.


Subject(s)
Molybdenum , Stainless Steel , Catalysis , Light
9.
IEEE Trans Cybern ; PP2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33400667

ABSTRACT

This article demonstrates that nonmaximum suppression (NMS), which is commonly used in object detection (OD) tasks to filter redundant detection results, is no longer secure. Considering that NMS has been an integral part of OD systems, thwarting the functionality of NMS can result in unexpected or even lethal consequences for such systems. In this article, an adversarial example attack that triggers malfunctioning of NMS in OD models is proposed. The attack, namely, Daedalus, compresses the dimensions of detection boxes to evade NMS. As a result, the final detection output contains extremely dense false positives. This can be fatal for many OD applications, such as autonomous vehicles and surveillance systems. The attack can be generalized to different OD models, such that the attack cripples various OD applications. Furthermore, a way of crafting robust adversarial examples is developed by using an ensemble of popular detection models as the substitutes. Considering the pervasive nature of model reuse in real-world OD scenarios, Daedalus examples crafted based on an ensemble of substitutes can launch attacks without knowing the parameters of the victim models. The experimental results demonstrate that the attack effectively stops NMS from filtering redundant bounding boxes. As the evaluation results suggest, Daedalus increases the false positive rate in detection results to 99.9% and reduces the mean average precision scores to 0, while maintaining a low cost of distortion on the original inputs. It also demonstrates that the attack can be practically launched against real-world OD systems via printed posters.

10.
J Bioinform Comput Biol ; 13(5): 1550026, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26449174

ABSTRACT

Protein-protein interaction networks constructed by high throughput technologies provide opportunities for predicting protein functions. A lot of approaches and algorithms have been applied on PPI networks to predict functions of unannotated proteins over recent decades. However, most of existing algorithms and approaches do not consider unannotated proteins and their corresponding interactions in the prediction process. On the other hand, algorithms which make use of unannotated proteins have limited prediction performance. Moreover, current algorithms are usually one-off predictions. In this paper, we propose an iterative approach that utilizes unannotated proteins and their interactions in prediction. We conducted experiments to evaluate the performance and robustness of the proposed iterative approach. The iterative approach maximally improved the prediction performance by 50%-80% when there was a high proportion of unannotated neighborhood protein in the network. The iterative approach also showed robustness in various types of protein interaction network. Importantly, our iterative approach initially proposes an idea that iteratively incorporates the interaction information of unannotated proteins into the protein function prediction and can be applied on existing prediction algorithms to improve prediction performance.


Subject(s)
Algorithms , Protein Interaction Maps , Animals , Computational Biology , Computer Simulation , Databases, Protein/statistics & numerical data , Humans , Models, Biological , Molecular Sequence Annotation , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...