Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 409
Filter
1.
Arch Microbiol ; 206(10): 392, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230673

ABSTRACT

Numerous works have reported that magnetic fields serve as signals capable of influencing microbial metabolism. However, little is known about the effect of magnetic field on erythritol production by the model microorganism Yarrowia lipolytica (Y. lipolytica). Therefore, we investigated the effect of low-frequency alternating magnetic fields (LF-AMF) with different magnetic field intensities (0-1.5 mT) and different magnetic field treatment times (1-10 days) on the production of erythritol by Y. lipolytica -JZ204. The optimal treatment condition was 0.5 mT for 8 days. As a result, a maximal erythritol yield was achieved 63.74 g/L, the biomass was reached 37 g/L, and the specific erythritol yield per unit of biomass was 1.7227 g/g, which were 60.72%, 32.09%, and 24.85% higher than the control, respectively. We investigated the internal mechanism of magnetic fields impact by using transcriptomics and RT-qPCR technology. This study demonstrated the effectiveness of LF-AMF in enhancing erythritol production by Y. lipolytica JZ-204, providing insights for the application of magnetic field in assisting microbial fermentation and improving the synthesis of beneficial products.


Subject(s)
Erythritol , Magnetic Fields , Yarrowia , Yarrowia/metabolism , Yarrowia/genetics , Yarrowia/growth & development , Erythritol/metabolism , Erythritol/biosynthesis , Fermentation , Biomass
2.
J Environ Manage ; 369: 122357, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232327

ABSTRACT

A large amount of greenhouse gas nitrous oxide (N2O) will be produced during the biological nitrogen removal process for organic wastewater of low C/N ratio. One of the effective methods to solve this problem is to incorporate inexpensive carbon source. In this study, raw wastewater (RW) from pig farm, that was not anaerobically digested, was utilized as exogenous carbon in both A/O and SBR aerobic reactor to treat liquid digestate with high ammonia nitrogen and low C/N ratio. The results showed that N2O emission in SBR was higher than that of A/O process under the same nitrogen load. The N2O conversion in the biological nitrogen removal process was investigated by the strategy of integrating stable isotope method and metagenomics. The δO18-N2O, δN15-N2O, and SP values of the SBR were closer to the denitrification values of Ammonia-Oxidizing Bacteria (AOB) than those of A/O. The abundance of AOB in the SBR reactor was higher than that in the A/O reactor, while the abundance of denitrifying bacteria was lower. The amoA/B/C gene abundance in the SBR was greater than that in the A/O, and the NOS gene abundance was the opposite. The results indicated that both AOB denitrification and bacterial denitrification led to the increase of N2O emissions of the SBR.


Subject(s)
Ammonia , Bacteria , Denitrification , Nitrogen , Nitrous Oxide , Wastewater , Wastewater/chemistry , Ammonia/metabolism , Bacteria/metabolism , Nitrous Oxide/metabolism , Nitrogen/metabolism , Carbon/metabolism , Bioreactors , Waste Disposal, Fluid/methods , Oxidation-Reduction
3.
Int J Colorectal Dis ; 39(1): 142, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289219

ABSTRACT

OBJECTIVE: The aim of this study is to evaluate the significance of combined detection of Septin9 and syndecan-2 (SDC2) methylation markers and serum tumor markers for the early diagnosis of colorectal cancer. METHODS: A total of 116 patients diagnosed with colorectal cancer between December 2022 and February 2024 were designated as the colorectal cancer group. Additionally, 31 patients with colorectal adenoma were assigned to the adenoma group, while 44 individuals undergoing routine physical examinations were included in the control group. Concentrations of Septin9, SDC2, fecal occult blood (FOB), and four tumor markers-carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA199), carbohydrate antigen 125 (CA125), and carbohydrate antigen 724 (CA724)-were measured. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves for Septin9, SDC2, the four tumor markers, FOB, the combination of Septin9 and SDC2, and the combined use of all seven indicators (CEA, CA19-9, CA125, CA72-4, FOB, Septin9, and SDC2). RESULTS: The colorectal cancer group exhibited the highest positive rates for Septin9, SDC2, the four tumor markers, the combined detection of Septin9 and SDC2, and the combined detection of all seven indicators, compared to both the adenoma and control groups (P < 0.05). The adenoma group also showed higher positive rates than the control group (P < 0.05). For patients with stage I-III colorectal cancer, the positive rates for the combined detection of Septin9 and SDC2 were 81.3%, 78.9%, and 90.2%, respectively, surpassing those for the combined detection of the four tumor markers (43.8%, 55.3%, and 61.0%). Additionally, the positive rates for the two-gene combination in stage III colorectal cancer were higher than those for FOB (P < 0.05). The sensitivity and area under the curve (AUC) for SDC2 were 73.3% and 0.855, respectively, exceeding the sensitivity and AUC for the combined four tumor markers, which were 60.3% and 0.734 (P < 0.05). The combined detection of the two methylated genes demonstrated a sensitivity of 86.2% and an AUC of 0.908, outperforming both FOB and the combined detection of the four tumor markers (P < 0.05). CONCLUSION: The detection of SDC2 exhibits high sensitivity for colorectal cancer, and when combined with Septin9, it significantly enhances the diagnostic accuracy for early-stage colorectal cancer, offering substantial clinical value.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Early Detection of Cancer , Septins , Syndecan-2 , Humans , Septins/blood , Septins/genetics , Syndecan-2/blood , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Biomarkers, Tumor/blood , Female , Male , Middle Aged , Early Detection of Cancer/methods , Aged , ROC Curve , Adult , Occult Blood
4.
J Am Chem Soc ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305495

ABSTRACT

A ligand-controlled regiodivergent and enantioselective ring expansion of benzosilacyclobutenes with internal naphthyl alkynes has been achieved by adjusting the ligand cavity size. The ligand (S)-8H-binaphthyl phosphoramidite, featuring small methyl groups on its arms, provides a spacious cavity that favors sterically demanding Si-Csp3 ring expansion, predominantly yielding axially chiral (S)-1-silacyclohexenyl arenes. In contrast, the ligand (R)-spiro phosphoramidite, with bulky t-Bu groups on its arms, offers a compact cavity that facilitates less sterically demanding Si-Csp2 ring expansion, leading primarily to axially chiral (S)-2-silacyclohexenyl arenes. Density functional theory calculations delineate distinct mechanistic pathways for each ring expansion route and elucidate their regio- and enantioselectivity.

5.
Curr Drug Deliv ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39230000

ABSTRACT

BACKGROUND: Eczema, an inflammatory skin disease causing intense itching, is a function of a range of internal and external factors, impacting individuals of all ages and leading to economic loss. Inflammation is the most important manifestation of eczema, and Matricaria recutita essential oil (MREO) extracted from Matricaria recutita possesses excellent antibacterial and anti-inflammatory properties. METHODS: In this study, Matricaria recutita microemulsions were prepared by the trans-phase emulsification method and their stability was determined by evaluating the relevant indexes. Establishment of 2,4-dinitro-chlorobenzene-induced AD model in mice. Detection of serum indexes of IL-6, IL-17, and TNF-α, and on pathological tissue sections, the HE staining, toluidine blue staining, immunohistochemistry, and observation were performed. RESULTS: The study obtained optimal conditions for the preparation of microemulsion formulations of Matricaria recutita. Through quality evaluation, it was found that the microemulsion increased stability, reduced irritation, and retained anti-inflammatory activity and therapeutic effects on eczema compared to Matricaria recutita essential oil (MREO). Studies have demonstrated that microemulsion formulations of Matricaria recutita and Matricaria recutita significantly down regulate the proinflammatory factors TNF-α, IL-17, and IL-6. It was shown by hematoxylin-eosin (HE) staining that both Matricaria recutita essential oil (MREO) and Matricaria recutita microemulsion (MRME) improved the inflammatory status of eczematous skin tissues in mice. The number of mast cells expressed in the tissues was decreased in the surface-treated group, as shown by toluidine blue staining. Additionally, the number of mast cells expressed in the tissues in the surface-treated group was reduced, as demonstrated by immunohistochemistry. Furthermore, immunohistochemistry revealed that MREO and MRME have immunomodulatory effects on the tissues. CONCLUSION: The study showed that microemulsion formulations of Matricaria recutita may serve as a novel remedy for eczema.

6.
Int J Biol Macromol ; 278(Pt 4): 135038, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39256119

ABSTRACT

Rapid hemostasis, potent antimicrobial activity, and efficient wound management are critical factors in enhancing the survival of trauma patients. Chitosan, as a green and sustainable biomaterial with low cost, degradability and biocompatibility, is widely used in the biomedical field. However, chitosan dissolves in an acidic environment, which is not conducive to wound healing. In this study, chitosan was chemically modified to address this limitation. A mussel-inspired hydrogel composed of caffeic acid-grafted chitosan, gallic acid-grafted chitosan, and oxidized microcrystalline cellulose (CHI-C/CSG/OMCC) was designed. This hydrogel exhibits blood-responsive gelation behavior and offers a synergistic combination of tissue adhesion, antimicrobial properties, and tissue repair capabilities. The carboxyl, hydroxyl, phenolic hydroxyl and aldehyde groups within the hydrogel system endowed the hydrogel with excellent adhesion properties (53.1 kPa adhesion strength to porcine skin-adherent tissues), biocompatibility, and excellent antimicrobial properties. Surprisingly, this hydrogel not only achieved rapid and effective hemostasis, but also effectively promoted wound healing in a mouse skin injury model. In addition, its remarkable efficacy in stopping bleeding within approximately 2 min without rebleeding was demonstrated in a porcine model of acute gastrointestinal hemorrhage in the esophagus, stomach, and intestines. This blood-responsive ternary hydrogel offers a promising alternative to wound management materials due to its excellent overall performance and superior efficacy in all phases of wound healing.


Subject(s)
Anti-Bacterial Agents , Bivalvia , Hemostasis , Hydrogels , Wound Healing , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Wound Healing/drug effects , Hemostasis/drug effects , Mice , Bivalvia/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Swine , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Caffeic Acids/pharmacology , Caffeic Acids/chemistry
7.
J Colloid Interface Sci ; 678(Pt A): 1165-1175, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39284271

ABSTRACT

CO2 hydrogenation to hydrocarbons under high space velocity is crucial for industrial applications, but traditional Fe-based catalysts often suffer from the low activity and poor stability. Herein, we report a new tandem catalyst system combining Pt/TiO2 catalysts with Fe3C catalysts for the direct conversion of CO2 into C2-C4 hydrocarbons under high space velocity. The Pt/TiO2 component promotes *CO intermediate production with an enhanced Reverse Water-Gas Shift (RWGS) reaction efficiency, providing a highly reactive species for the Fe3C catalyst to achieve Fischer-Tropsch synthesis (FTS). By maximizing the contact interface between the Pt/TiO2 and Fe-based components through a granule mixing configuration, we achieve significant enhancements in both CO2 conversion rate (24.0 %) and C2-C4 hydrocarbons selectivity (51.1 %) under the gaseous hourly space velocity (GHSV) of 100000 mL gcat-1h-1. Besides, excellent stability is achieved by the tandem catalysts with continuous catalysis for up to 80 h without significant decrease in activity. Through modulation of the reduction states of iron oxide, we effectively tune the composition of Fe-based catalyst, thereby tailoring the product distribution. Through this work, we not only offer a promising avenue for reducing CO2 for efficient CO2 utilization but also highlight the importance of catalyst design in advancing sustainable chemical synthesis.

8.
Int J Biol Macromol ; : 135909, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313056

ABSTRACT

The design of polyelectrolyte hydrogel with unique tensile and adhesive properties which can be applied across disciplines has gradually become a popular trend. However, the phenomenon of global warming and the emergence of extreme weather, it still faces some urgent problems that should be solved, such as the optimal utilization of polyelectrolyte hydrogel across a wide range of temperatures. Herein, a wide temperature sensitivity and conductivity hydrogel based on sodium alginate, acrylamide and N-isopropylacrylamide was constructed, which exhibited excellent adhesion and temperature conductivity. It is worth noting that after the inclusion of CaCO3 and NaCl in the hydrogel, the hydrogel showed excellent tensile properties (fracture strain >2000 %). Within a wide temperature range (-15-50 °C), it exhibits exceptional electrical conductivity (2.75 S ∗ m-1) and sensitivity (GF = 8.76 under high strain). This innovative intelligent polyelectrolyte hydrogel provides suitable strategy for flexible sensors, smart wearable devices and medical monitoring equipment.

9.
Front Nutr ; 11: 1408620, 2024.
Article in English | MEDLINE | ID: mdl-39135555

ABSTRACT

Polyphenols are a group of naturally occurring compounds that possess a range of biological properties capable of potentially mitigating or preventing the progression of age-related cognitive decline and Alzheimer's disease (AD). AD is a chronic neurodegenerative disease known as one of the fast-growing diseases, especially in the elderly population. Moreover, as the primary etiology of dementia, it poses challenges for both familial and societal structures, while also imposing a significant economic strain. There is currently no pharmacological intervention that has demonstrated efficacy in treating AD. While polyphenols have exhibited potential in inhibiting the pathological hallmarks of AD, their limited bioavailability poses a significant challenge in their therapeutic application. Furthermore, in order to address the therapeutic constraints, several polymer nanoparticles are being explored as improved therapeutic delivery systems to optimize the pharmacokinetic characteristics of polyphenols. Polymer nanoparticles have demonstrated advantageous characteristics in facilitating the delivery of polyphenols across the blood-brain barrier, resulting in their efficient distribution within the brain. This review focuses on amyloid-related diseases and the role of polyphenols in them, in addition to discussing the anti-amyloid effects and applications of polyphenol-based polymer nanoparticles.

10.
Int J Oncol ; 65(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39155873

ABSTRACT

Following the publication of the above article, a concerned reader drew to the authors' attention that, among Figs. 1D, 2A and 4B, certain of the control western blots had been re­used in different blots. The authors have retrieved and re­examined their original data, and were able to identify the correct control western blots where the data had been inadvertently duplicated in the affected original figures. The revised versions of Figs. 2 and 4, now featuring the correct control western blots, are shown in the subsequent two pages. The authors regret that the data in question featured in the original article had been re­used, and thank the Editor of International Journal of Oncology for granting them the opportunity to publish this corrigendum. All the authors agree with the publication of this corrigendum; furthermore, they apologize to the readership of the journal for any inconvenience caused. [International Journal of Oncology 46: 1205­1213, 2015; DOI: 10.3892/ijo.2014.2800].

11.
Front Chem ; 12: 1447312, 2024.
Article in English | MEDLINE | ID: mdl-39206441

ABSTRACT

Tetrodotoxin (TTX) is a highly potent and widely distributed ion-channel marine neurotoxin; it has no specific antidote and poses a great risk to human health. Therefore, detecting and quantifying TTX to effectively implement prevention strategies is important for food safety. The development of novel and highly sensitive, highly specific, rapid, and simple techniques for trace TTX detection has attracted widespread attention. This review summarizes the latest advances in the detection and quantitative analysis of TTX, covering detection methods based on biological and cellular sensors, immunoassays and immunosensors, aptamers, and liquid chromatography-mass spectrometry. It further discusses the advantages and applications of various detection technologies developed for TTX and focuses on the frontier areas and development directions of TTX detection, providing relevant information for further investigations.

12.
J Cancer Res Ther ; 20(4): 1344-1349, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39206997

ABSTRACT

BACKGROUNDS: Programmed death receptor 1 (PD-1) monoclonal antibody has been approved for the first and second-line treatments of hepatocellular carcinoma (HCC). This study aimed to evaluate the efficacy and safety of tislelizumab + regorafenib as a second-line treatment option for advanced HCC. METHODS: Treatment-related adverse events (TRAEs) were the primary endpoints in this clinical trial comprising 28 patients with advanced HCC. The secondary endpoints included objective response rate (ORR), disease control rate (DCR), and progression-free survival (PFS). RESULTS: According to the mRECIST 1.1 evaluation criteria, the ORR was 28.6%. Complete and partial response were observed in 3 and 5 patients, respectively; stable disease was observed in 12 patients (DCR, 71.4%). The median PFS was 6.4 months. The incidence of grade 1-2 and 3-4 TRAEs was 57.1% and 39.3%, respectively. CONCLUSION: This study suggests that tislelizumab + regorafenib can be used as a second-line treatment for advanced HCC.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Hepatocellular , Liver Neoplasms , Phenylurea Compounds , Pyridines , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Pyridines/therapeutic use , Pyridines/administration & dosage , Pyridines/adverse effects , Female , Male , Middle Aged , Phenylurea Compounds/therapeutic use , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Aged , Prospective Studies , Adult , Treatment Outcome
13.
Biomed Pharmacother ; 178: 117195, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39068852

ABSTRACT

Da Chuanxiong Formula (DCXF) is a traditional herbal prescription used for pain management. It consists of Chuanxiong Rhizoma (CR) and Gastrodiae Rhizoma (GR). Despite its long history of use, the underlying therapeutic mechanism of DCXF remains insufficiently understood. Therefore, in this study, key target genes were obtained through network pharmacology research methods and molecular docking techniques, including transient receptor potential vanilloid 1 (TRPV1), adenosine A2a receptor (ADORA2A), nuclear receptor subfamily 3 group C member 1 (NR3C1), and protein kinase C beta (PRKCB). Molecular dynamics simulations demonstrated the favorable binding between all four key genes and their corresponding compounds. Notably, chronic constriction injury (CCI) treatment resulted in a significant decrease in mechanical threshold and thermal latency period for rat foot contraction, which was ameliorated upon administration of DCXF. Furthermore, real-time quantitative reverse transcription PCR (RT-qPCR) and western blot (WB) analyses indicated an upregulation of TRPV1, ADORA2A, NR3C1, and PRKCB expression in the rat dorsal root ganglion following CCI, which was attenuated by treatment with DCXF. The expressions of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6), in the rat dorsal root ganglion were assessed using ELISA, confirming consistent trends with the aforementioned findings. The results of this study offer a promising theoretical foundation for the utilization of DCXF in the treatment of neuropathic pain (NP).


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Molecular Dynamics Simulation , Network Pharmacology , Neuralgia , Rats, Sprague-Dawley , Animals , Neuralgia/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Male , Rats , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Disease Models, Animal
14.
Cell Death Dis ; 15(7): 540, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39080251

ABSTRACT

Cancer cells often exhibit fragmented mitochondria and dysregulated mitochondrial dynamics, but the underlying mechanism remains elusive. Here, we found that the mitochondrial protein death-associated protein 3 (DAP3) is localized to mitochondria and promotes the progression of hepatocellular carcinoma (HCC) by regulating mitochondrial function. DAP3 can promote the proliferation, migration, and invasion of HCC cells in vitro and in vivo by increasing mitochondrial respiration, inducing the epithelial-mesenchymal transition (EMT), and slowing cellular senescence. Mechanistically, DAP3 can increase mitochondrial complex I activity in HCC cells by regulating the translation and expression of MT-ND5. The phosphorylation of DAP3 at Ser185 mediated by AKT is the key event mediating the mitochondrial localization and function of DAP3 in HCC cells. In addition, the DAP3 expression in HCC samples is inversely correlated with patient survival. Our results revealed a mechanism by which DAP3 promotes mitochondrial function and HCC progression by regulating MT-ND5 translation and expression, indicating that DAP3 may be a therapeutic target for HCC.


Subject(s)
Apoptosis Regulatory Proteins , Carcinoma, Hepatocellular , Disease Progression , Liver Neoplasms , Mitochondria , Animals , Female , Humans , Male , Mice , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins
15.
RSC Adv ; 14(29): 20604-20608, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38946766

ABSTRACT

Precise control of the size and morphology of metal-organic framework (MOF) crystals is challenging yet critical for the expansion of the application potential of MOF materials. This work presents a detailed investigation of the impact of various synthetic conditions such as reactant ratio, acidity, capping agent, reaction solution (H2O, ethanol and DMF) etc. on the size and morphology of Mg-MOF-74, a classical MOF with record high CO2 uptake capacity. By varying these fabrication parameters and modulators, the morphology and size of crystals can be precisely tuned in the nanometer to micrometer range. Particularly, the nanosized flaky Mg-MOF-74 crystals with an aspect ratio of ∼0.5 were synthesized for the first time by varying the amount of water. The MOF-74 crystals with different size and morphologies are good candidates for more advanced applications favored by crystal size and morphology control.

16.
Front Pharmacol ; 15: 1412489, 2024.
Article in English | MEDLINE | ID: mdl-38983913

ABSTRACT

Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.

17.
Food Res Int ; 191: 114696, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059907

ABSTRACT

Baltic herring is the main catch in the Baltic Sea; however, its usage could be improved due to the low processing rate. Previously we have shown that whole Baltic herring hydrolysates (BHH) and herring byproducts hydrolysates (BHBH) by commercial enzymes consisted of bioactive peptides and had moderate bioactivity in in vitro dipeptidyl peptidase (DPP)-4 assay. In this study, we identified the hydrolysate peptides by LC-MS/MS and predicted the potential bioactive DPP-4 inhibitory peptides using in silico tools. Based on abundance, peptide length and stability, 86 peptides from BHBH and 80 peptides from BHH were proposed to be novel DPP-4 inhibitory peptides. BHH was fed to a mice intervention of a high-fat, high-fructose diet to validate the bioactivity. The results of the glucose tolerance and insulin tolerance improved. Plasma DPP-4 activities, C-peptide levels, and HOMA-IR scores significantly decreased, while plasma glucagon-like peptide-1 content increased. In conclusion, BHH is an inexpensive and sustainable source of functional antidiabetic ingredients.


Subject(s)
Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors , Obesity , Animals , Dipeptidyl Peptidase 4/metabolism , Mice , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Obesity/metabolism , Male , Peptides , Diet, High-Fat , Fishes , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Disease Models, Animal , Tandem Mass Spectrometry , Hypoglycemic Agents/pharmacology , Computer Simulation , Mice, Inbred C57BL , Blood Glucose/metabolism , Blood Glucose/drug effects , Glucagon-Like Peptide 1/metabolism , Insulin Resistance
18.
MedComm (2020) ; 5(8): e672, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39081515

ABSTRACT

Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.

20.
Pharmacol Res ; 206: 107275, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908615

ABSTRACT

Triptolide (TP) is the principal bioactive compound of Tripterygium wilfordii with significant anti-tumor, anti-inflammatory and immunosuppressive activities. However, its severe hepatotoxicity greatly limits its clinical use. The underlying mechanism of TP-induced liver damage is still poorly understood. Here, we estimate the role of the gut microbiota in TP hepatotoxicity and investigate the bile acid metabolism mechanisms involved. The results of the antibiotic cocktail (ABX) and fecal microbiota transplantation (FMT) experiment demonstrate the involvement of intestinal flora in TP hepatotoxicity. Moreover, TP treatment significantly perturbed gut microbial composition and reduced the relative abundances of Lactobacillus rhamnosus GG (LGG). Supplementation with LGG reversed TP-induced hepatotoxicity by increasing bile salt hydrolase (BSH) activity and reducing the increased conjugated bile acids (BA). LGG supplementation upregulates hepatic FXR expression and inhibits NLRP3 inflammasome activation in TP-treated mice. In summary, this study found that gut microbiota is involved in TP hepatotoxicity. LGG supplementation protects mice against TP-induced liver damage. The underlying mechanism was associated with the gut microbiota-BA-FXR axis. Therefore, LGG holds the potential to prevent and treat TP hepatotoxicity in the clinic.


Subject(s)
Bile Acids and Salts , Chemical and Drug Induced Liver Injury , Diterpenes , Epoxy Compounds , Gastrointestinal Microbiome , Lacticaseibacillus rhamnosus , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Receptors, Cytoplasmic and Nuclear , Animals , Diterpenes/pharmacology , Phenanthrenes/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Gastrointestinal Microbiome/drug effects , Epoxy Compounds/pharmacology , Bile Acids and Salts/metabolism , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Probiotics/therapeutic use , Probiotics/pharmacology , Fecal Microbiota Transplantation , Inflammasomes/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL