Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters










Publication year range
1.
Nature ; 629(8010): 74-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38693415

ABSTRACT

Within the family of two-dimensional dielectrics, rhombohedral boron nitride (rBN) is considerably promising owing to having not only the superior properties of hexagonal boron nitride1-4-including low permittivity and dissipation, strong electrical insulation, good chemical stability, high thermal conductivity and atomic flatness without dangling bonds-but also useful optical nonlinearity and interfacial ferroelectricity originating from the broken in-plane and out-of-plane centrosymmetry5-23. However, the preparation of large-sized single-crystal rBN layers remains a challenge24-26, owing to the requisite unprecedented growth controls to coordinate the lattice orientation of each layer and the sliding vector of every interface. Here we report a facile methodology using bevel-edge epitaxy to prepare centimetre-sized single-crystal rBN layers with exact interlayer ABC stacking on a vicinal nickel surface. We realized successful accurate fabrication over a single-crystal nickel substrate with bunched step edges of the terrace facet (100) at the bevel facet (110), which simultaneously guided the consistent boron-nitrogen bond orientation in each BN layer and the rhombohedral stacking of BN layers via nucleation near each bevel facet. The pure rhombohedral phase of the as-grown BN layers was verified, and consequently showed robust, homogeneous and switchable ferroelectricity with a high Curie temperature. Our work provides an effective route for accurate stacking-controlled growth of single-crystal two-dimensional layers and presents a foundation for applicable multifunctional devices based on stacked two-dimensional materials.

2.
Nat Nanotechnol ; 19(4): 479-484, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38049594

ABSTRACT

The permeability and selectivity of biological and artificial ion channels correlate with the specific hydration structure of single ions. However, fundamental understanding of the effect of ion-ion interaction remains elusive. Here, via non-contact atomic force microscopy measurements, we demonstrate that hydrated alkali metal cations (Na+ and K+) at charged surfaces could come into close contact with each other through partial dehydration and water rearrangement processes, forming one-dimensional chain structures. We prove that the interplay at the nanoscale between the water-ion and water-water interaction can lead to an effective ion-ion attraction overcoming the ionic Coulomb repulsion. The tendency for different ions to become closely packed follows the sequence K+ > Na+ > Li+, which is attributed to their different dehydration energies and charge densities. This work highlights the key role of water molecules in prompting close packing and concerted movement of ions at charged surfaces, which may provide new insights into the mechanism of ion transport under atomic confinement.

3.
Adv Mater ; 36(11): e2303122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37522646

ABSTRACT

Nonlinear optical crystals lie at the core of ultrafast laser science and quantum communication technology. The emergence of 2D materials provides a revolutionary potential for nonlinear optical crystals due to their exceptionally high nonlinear coefficients. However, uncontrolled stacking orders generally induce the destructive nonlinear response due to the optical phase deviation in different 2D layers. Therefore, conversion efficiency of 2D nonlinear crystals is typically limited to less than 0.01% (far below the practical criterion of >1%). Here, crystalline films of rhombohedral boron nitride (rBN) with parallel stacked layers are controllably synthesized. This success is realized by the utilization of vicinal FeNi (111) single crystal, where both the unidirectional arrangement of BN grains into a single-crystal monolayer and the continuous precipitation of (B,N) source for thick layers are guaranteed. The preserved in-plane inversion asymmetry in rBN films keeps the in-phase second-harmonic generation field in every layer and leads to a record-high conversion efficiency of 1% in the whole family of 2D materials within the coherence thickness of only 1.6 µm. The work provides a route for designing ultrathin nonlinear optical crystals from 2D materials, and will promote the on-demand fabrication of integrated photonic and compact quantum optical devices.

4.
Faraday Discuss ; 249(0): 38-49, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-37786316

ABSTRACT

Condensation and arrangement of ions at water-solid interfaces are of great importance in the formation of electrical double layers (EDL) and the transport of ions under a confined geometry. So far, the microscopic understanding of interfacial ion configurations is still far from complete, especially when the local ion concentration is high and ion-ion interactions become prominent. In this study, we directly visualized alkali metal cations within the hydrogen-bonding network of water on graphite and Cu(111)-supported graphene surfaces, using qPlus-based noncontact atomic force microscopy (NC-AFM). We found that the codeposition of the alkali cations and water molecules on the hydrophobic graphite surface leads to the formation of an ion-doped bilayer hexagonal ice (BHI) structure, where the ions are repelled from each other and scattered in a disordered distribution. In contrast, the hydrated alkali cations aggregate in one dimension on the more hydrophilic graphene/Cu(111) surface, forming a nematic state with a long-range order. Such a nematic state arises from the delicate interplay between water-ion and water-water interactions under surface confinement. These results reveal the high sensitivity of ion-ion interactions and ionic ordering to the surface hydrophobicity and hydrophilicity.

5.
Phys Rev Lett ; 131(23): 233801, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134808

ABSTRACT

Optical phase matching involves establishing a proper phase relationship between the fundamental excitation and generated waves to enable efficient optical parametric processes. It is typically achieved through birefringence or periodic polarization. Here, we report that the interlayer twist angle in two-dimensional (2D) materials creates a nonlinear geometric phase that can compensate for the phase mismatch, and the vertical assembly of the 2D layers with a proper twist sequence generates a nontrivial "twist-phase-matching" (twist-PM) regime. The twist-PM model provides superior flexibility in the design of optical crystals, which can be applied for twisted layers with either periodic or random thickness distributions. The designed crystal from the twisted rhombohedral boron nitride films within a thickness of only 3.2 µm is capable of producing a second-harmonic generation with conversion efficiency of ∼8% and facile polarization controllability that is absent in conventional crystals. Our methodology establishes a platform for the rational design and atomic manufacturing of nonlinear optical crystals based on abundant 2D materials.

6.
Sci Bull (Beijing) ; 68(14): 1514-1521, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37438155

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are regarded as pivotal semiconductor candidates for next-generation devices due to their atomic-scale thickness, high carrier mobility and ultrafast charge transfer. In analog to the traditional semiconductor industry, batch production of wafer-scale TMDs is the prerequisite to proceeding with their integrated circuits evolution. However, the production capacity of TMD wafers is typically constrained to a single and small piece per batch (mainly ranging from 2 to 4 inches), due to the stringent conditions required for effective mass transport of multiple precursors during growth. Here we developed a modularized growth strategy for batch production of wafer-scale TMDs, enabling the fabrication of 2-inch wafers (15 pieces per batch) up to a record-large size 12-inch wafers (3 pieces per batch). Each module, comprising a self-sufficient local precursor supply unit for robust individual TMD wafer growth, is vertically stacked with others to form an integrated array and thus a batch growth. Comprehensive characterization techniques, including optical spectroscopy, electron microscopy, and transport measurements unambiguously illustrate the high-crystallinity and the large-area uniformity of as-prepared monolayer films. Furthermore, these modularized units demonstrate versatility by enabling the conversion of as-produced wafer-scale MoS2 into various structures, such as Janus structures of MoSSe, alloy compounds of MoS2(1-x)Se2x, and in-plane heterostructures of MoS2-MoSe2. This methodology showcases high-quality and high-yield wafer output and potentially enables the seamless transition from lab-scale to industrial-scale 2D semiconductor complementary to silicon technology.

8.
J Phys Chem Lett ; 14(24): 5573-5579, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37306346

ABSTRACT

Raman spectroscopy, a nondestructive fingerprinting technique, is mainly utilized to identify molecular species and phonon modes of materials. However, direct Raman characterization of two-dimensional materials typically synthesized on catalytic metal substrates is extremely challenging because of the significant electric screening and interfacial electronic couplings. Here, we demonstrate that by covering as-grown graphene with boron nitride (BN) films, the Raman intensity of graphene can be enhanced by two orders of magnitude and is also several times stronger than that of suspended graphene. This great Raman enhancement originates from the optical field amplification by Fabry-Pérot cavity in BN films and the local field plasmon near copper steps. We further demonstrate the direct characterization of the local strain and doping level of as-grown graphene and in situ monitoring of the molecule reaction process by enhanced Raman spectroscopy. Our results will broaden the optical investigations of interfacial sciences on metals, including photoinduced charge transfer dynamics and photocatalysis at metal surfaces.

9.
Nat Commun ; 14(1): 2382, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37185918

ABSTRACT

Isotopic mixtures result in distinct properties of materials such as thermal conductivity and nuclear process. However, the knowledge of isotopic interface remains largely unexplored mainly due to the challenges in atomic-scale isotopic identification. Here, using electron energy-loss spectroscopy in a scanning transmission electron microscope, we reveal momentum-transfer-dependent phonon behavior at the h-10BN/h-11BN isotope heterostructure with sub-unit-cell resolution. We find the phonons' energy changes gradually across the interface, featuring a wide transition regime. Phonons near the Brillouin zone center have a transition regime of ~3.34 nm, whereas phonons at the Brillouin zone boundary have a transition regime of ~1.66 nm. We propose that the isotope-induced charge effect at the interface accounts for the distinct delocalization behavior. Moreover, the variation of phonon energy between atom layers near the interface depends on both of momentum transfer and mass change. This study provides new insights into the isotopic effects in natural materials.

10.
Nature ; 615(7950): 56-61, 2023 03.
Article in English | MEDLINE | ID: mdl-36859579

ABSTRACT

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

11.
Nature ; 617(7959): 86-91, 2023 05.
Article in English | MEDLINE | ID: mdl-36991124

ABSTRACT

Ice is present everywhere on Earth and has an essential role in several areas, such as cloud physics, climate change and cryopreservation. The role of ice is determined by its formation behaviour and associated structure. However, these are not fully understood1. In particular, there is a long-standing debate about whether water can freeze to form cubic ice-a currently undescribed phase in the phase space of ordinary hexagonal ice2-6. The mainstream view inferred from a collection of laboratory data attributes this divergence to the inability to discern cubic ice from stacking-disordered ice-a mixture of cubic and hexagonal sequences7-11. Using cryogenic transmission electron microscopy combined with low-dose imaging, we show here the preferential nucleation of cubic ice at low-temperature interfaces, resulting in two types of separate crystallization of cubic ice and hexagonal ice from water vapour deposition at 102 K. Moreover, we identify a series of cubic-ice defects, including two types of stacking disorder, revealing the structure evolution dynamics supported by molecular dynamics simulations. The realization of direct, real-space imaging of ice formation and its dynamic behaviour at the molecular level provides an opportunity for ice research at the molecular level using transmission electron microscopy, which may be extended to other hydrogen-bonding crystals.

12.
J Phys Chem A ; 127(13): 2902-2911, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36949622

ABSTRACT

We applied the harmonic inversion technique to extract vibrational eigenvalues from the semiclassical initial value representation (SC-IVR) propagator of molecular systems described by explicit potential surfaces. The cross-correlation filter-diagonalization (CCFD) method is used for the inversion problem instead of the Fourier transformation, which allows much shorter propagation time and is thus capable of avoiding numerical divergence issues while getting rid of approximations like the separable one to the pre-exponential factor. We also used the "Divide-and-Conquer" technique to control the total dimensions under consideration, which helps to further enhance the numerical behavior of SC-IVR calculations and the stability of harmonic inversion methods. The technique is tested on small molecules and water trimer to justify its applicability and reliability. Results show that the CCFD method can effectively extract the vibrational eigenvalues from short trajectories and reproduce the original spectra conventionally obtained from long-time ones, with no loss on accuracy while the numerical behavior is much better. This work demonstrates the possibility to apply the combined method of CCFD and SC-IVR to real molecular potential surfaces, which might be a new way to overcome the numerical instabilities caused by the increase of dimensions.

13.
Nat Nanotechnol ; 18(5): 529-534, 2023 May.
Article in English | MEDLINE | ID: mdl-36823369

ABSTRACT

Light confinement in nanostructures produces an enhanced light-matter interaction that enables a vast range of applications including single-photon sources, nanolasers and nanosensors. In particular, nanocavity-confined polaritons display a strongly enhanced light-matter interaction in the infrared regime. This interaction could be further boosted if polaritonic modes were moulded to form whispering-gallery modes; but scattering losses within nanocavities have so far prevented their observation. Here, we show that hexagonal BN nanotubes act as an atomically smooth nanocavity that can sustain phonon-polariton whispering-gallery modes, owing to their intrinsic hyperbolic dispersion and low scattering losses. Hyperbolic whispering-gallery phonon polaritons on BN nanotubes of ~4 nm radius (sidewall of six atomic layers) are characterized by an ultrasmall nanocavity mode volume (Vm ≈ 10-10λ03 at an optical wavelength λ0 ≈ 6.4 µm) and a Purcell factor (Q/Vm) as high as 1012. We posit that BN nanotubes could become an important material platform for the realization of one-dimensional, ultrastrong light-matter interactions, with exciting implications for compact photonic devices.

14.
Nat Nanotechnol ; 17(12): 1258-1264, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36302961

ABSTRACT

Multilayer van der Waals (vdW) film materials have attracted extensive interest from the perspective of both fundamental research1-3 and technology4-7. However, the synthesis of large, thick, single-crystal vdW materials remains a great challenge because the lack of out-of-plane chemical bonds weakens the epitaxial relationship between neighbouring layers8-31. Here we report the continuous epitaxial growth of single-crystal graphite films with thickness up to 100,000 layers on high-index, single-crystal nickel (Ni) foils. Our epitaxial graphite films demonstrate high single crystallinity, including an ultra-flat surface, centimetre-size single-crystal domains and a perfect AB-stacking structure. The exfoliated graphene shows excellent physical properties, such as a high thermal conductivity of ~2,880 W m-1 K-1, intrinsic Young's modulus of ~1.0 TPa and low doping density of ~2.2 × 1010 cm-2. The growth of each single-crystal graphene layer is realized by step edge-guided epitaxy on a high-index Ni surface, and continuous growth is enabled by the isothermal dissolution-diffusion-precipitation of carbon atoms driven by a chemical potential gradient between the two Ni surfaces. The isothermal growth enables the layers to grow at optimal conditions, without stacking disorders or stress gradients in the final graphite. Our findings provide a facile and scalable avenue for the synthesis of high-quality, thick vdW films for various applications.

15.
Nat Mater ; 21(11): 1263-1268, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36109673

ABSTRACT

The production of large-area twisted bilayer graphene (TBG) with controllable angles is a prerequisite for proceeding with its massive applications. However, most of the prevailing strategies to fabricate twisted bilayers face great challenges, where the transfer methods are easily stuck by interfacial contamination, and direct growth methods lack the flexibility in twist-angle design. Here we develop an effective strategy to grow centimetre-scale TBG with arbitrary twist angles (accuracy, <1.0°). The success in accurate angle control is realized by an angle replication from two prerotated single-crystal Cu(111) foils to form a Cu/TBG/Cu sandwich structure, from which the TBG can be isolated by a custom-developed equipotential surface etching process. The accuracy and consistency of the twist angles are unambiguously illustrated by comprehensive characterization techniques, namely, optical spectroscopy, electron microscopy, photoemission spectroscopy and photocurrent spectroscopy. Our work opens an accessible avenue for the designed growth of large-scale two-dimensional twisted bilayers and thus lays the material foundation for the future applications of twistronics at the integration level.

16.
Science ; 377(6603): 315-319, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857595

ABSTRACT

The nature of hydrated proton on solid surfaces is of vital importance in electrochemistry, proton channels, and hydrogen fuel cells but remains unclear because of the lack of atomic-scale characterization. We directly visualized Eigen- and Zundel-type hydrated protons within the hydrogen bonding water network on Au(111) and Pt(111) surfaces, using cryogenic qPlus-based atomic force microscopy under ultrahigh vacuum. We found that the Eigen cations self-assembled into monolayer structures with local order, and the Zundel cations formed long-range ordered structures stabilized by nuclear quantum effects. Two Eigen cations could combine into one Zundel cation accompanied with a simultaneous proton transfer to the surface. Moreover, we revealed that the Zundel configuration was preferred over the Eigen on Pt(111), and such a preference was absent on Au(111).

17.
Nano Lett ; 22(12): 4661-4668, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35640103

ABSTRACT

Confined nanospaces provide a new platform to promote catalytic reactions. However, the mechanism of catalytic enhancement in the nanospace still requires insightful exploration due to the lack of direct visualization. Here, we report operando investigations on the etching and growth of graphene in a two-dimensional (2D) confined space between graphene and a Cu substrate. We observed that the graphene layer between the Cu and top graphene layer was surprisingly very active in etching (more than 10 times faster than the etching of the top graphene layer). More strikingly, at a relatively low temperature (∼530 °C), the etched carbon radicals dissociated from the bottom layer, in turn feeding the growth of the top graphene layer with a very high efficiency. Our findings reveal the in situ dynamics of the anomalous confined catalytic processes in 2D confined spaces and thus pave the way for the design of high-efficiency catalysts.

18.
Adv Mater ; 34(33): e2201120, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35470492

ABSTRACT

2D metal carbides and nitrides (MXene) are promising candidates for electromagnetic (EM) shielding, saturable absorption, thermal therapy, and photocatalysis owing to their excellent EM absorption. The plasmon resonances in metallic MXene micro/nanostructures may play an important role in enhancing the EM absorption; however, their contribution has not been determined due to the lack of a precise understanding of its plasmon behavior. Here, the use of high-spatial-resolution electron energy-loss spectroscopy to measure the plasmon dispersion of MXene films with different thicknesses is reported, enabling accurate analysis of the EM absorption of complex MXene structures in a wide frequency range via a theoretical model. The EM absorption of MXene can be excited at the desired frequency by controlling the momentum (e.g., the sizes of the nanoflakes for EM excitation) as the strength can be enhanced by increasing the layer number and the interlayer distance in MXene. For example, a 3 nm interlayer distance can nearly double the plasmon-enhanced EM absorption in MXene nanostructures. These findings can guide the design of advanced ultrathin EM absorption materials for a broad range of applications.

19.
Nano Lett ; 22(7): 2725-2733, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35293751

ABSTRACT

In van der Waals (vdW) heterostructures, the interlayer electron-phonon coupling (EPC) provides one unique channel to nonlocally engineer these elementary particles. However, limited by the stringent occurrence conditions, the efficient engineering of interlayer EPC remains elusive. Here we report a multitier engineering of interlayer EPC in WS2/boron nitride (BN) heterostructures, including isotope enrichments of BN substrates, temperature, and high-pressure tuning. The hyperfine isotope dependence of Raman intensities was unambiguously revealed. In combination with theoretical calculations, we anticipate that WS2/BN supercells could induce Brillouin-zone-folded phonons that contribute to the interlayer coupling, leading to a complex nature of broad Raman peaks. We further demonstrate the significance of a previously unexplored parameter, the interlayer spacing. By varying the temperature and high pressure, we effectively manipulated the strengths of EPC with on/off capabilities, indicating critical thresholds of the layer-layer spacing for activating and strengthening interlayer EPC. Our findings provide new opportunities to engineer vdW heterostructures with controlled interlayer coupling.

20.
Nat Commun ; 13(1): 1007, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35197463

ABSTRACT

The precise precursor supply is a precondition for controllable growth of two-dimensional (2D) transition metal dichalcogenides (TMDs). Although great efforts have been devoted to modulating the transition metal supply, few effective methods of chalcogen feeding control were developed. Here we report a strategy of using active chalcogen monomer supply to grow high-quality TMDs in a robust and controllable manner, e.g., MoS2 monolayers perform representative photoluminescent circular helicity of ~92% and electronic mobility of ~42 cm2V-1s-1. Meanwhile, a uniform quaternary TMD alloy with three different anions, i.e., MoS2(1-x-y)Se2xTe2y, was accomplished. Our mechanism study revealed that the active chalcogen monomers can bind and diffuse freely on a TMD surface, which enables the effective nucleation, reaction, vacancy healing and alloy formation during the growth. Our work offers a degree of freedom for the controllable synthesis of 2D compounds and their alloys, benefiting the development of high-end devices with desired 2D materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...