Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Small ; : e2402649, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949403

ABSTRACT

The utilization of the organic-inorganic hybrid photocatalysts for water splitting has gained significant attention due to their ability to combine the advantages of both materials and generate synergistic effects. However, they are still far from practical application due to the limited understanding of the interactions between these two components and the complexity of their preparation process. Herein, a facial approach by combining a glycolated conjugated polymer with a TiO2-X mesoporous sphere to prepare high-efficiency hybrid photocatalysts is presented. The functionalization of conjugated polymers with hydrophilic oligo (ethylene glycol) side chains can not only facilitate the dispersion of conjugated polymers in water but also promote the interaction with TiO2-X forming stable heterojunction nanoparticles. An apparent quantum yield of 53.3% at 365 nm and a hydrogen evolution rate of 35.7 mmol h-1 g-1 is achieved by the photocatalyst in the presence of Pt co-catalyst. Advanced photophysical studies based on femtosecond transient absorption spectroscopy and in situ, XPS analyses reveal the charge transfer mechanism at type II heterojunction interfaces. This work shows the promising prospect of glycolated polymers in the construction of hybrid heterojunctions for photocatalytic hydrogen production and offers a deep understanding of high photocatalytic performance by such heterojunction photocatalysts.

2.
ACS Appl Mater Interfaces ; 16(10): 12886-12896, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38425182

ABSTRACT

Eco-friendly solution processing and the low-cost synthesis of photoactive materials are important requirements for the commercialization of organic solar cells (OSCs). Although varieties of aqueous-soluble acceptors have been developed, the availability of aqueous-processable polymer donors remains quite limited. In particular, the generally shallow highest occupied molecular orbital (HOMO) energy levels of existing polymer donors limit further increases in the power conversion efficiency (PCE). Here, we design and synthesize two water/alcohol-processable polymer donors, poly[(thiophene-2,5-diyl)-alt-(2-((13-(2,5,8,11-tetraoxadodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (P(Qx8O-T)) and poly[(selenophene-2,5-diyl)-alt-(2-((13-(2,5,8,11-tetraoxadodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (P(Qx8O-Se)) with oligo(ethylene glycol) (OEG) side chains, having deep HOMO energy levels (∼-5.4 eV). The synthesis of the polymers is achieved in a few synthetic and purification steps at reduced cost. The theoretical calculations uncover that the dielectric environmental variations are responsible for the observed band gap lowering in OEG-based polymers compared to their alkylated counterparts. Notably, the aqueous-processed all-polymer solar cells (aq-APSCs) based on P(Qx8O-T) and poly[(N,N'-bis(3-(2-(2-(2-methoxyethoxy)-ethoxy)ethoxy)-2-((2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-methyl)propyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-(2,5-thiophene)] (P(NDIDEG-T)) active layer exhibit a PCE of 2.27% and high open-circuit voltage (VOC) approaching 0.8 V, which are among the highest values for aq-APSCs reported to date. This study provides important clues for the design of low-cost, aqueous-processable polymer donors and the fabrication of aqueous-processable OSCs with high VOC.

3.
Sci Adv ; 10(12): eadk1278, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38507481

ABSTRACT

Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.


Subject(s)
Placenta , Placentation , Pregnancy , Female , Mice , Animals , Placenta/diagnostic imaging , Microscopy/methods , Optical Imaging , Intravital Microscopy
4.
Microb Ecol ; 87(1): 54, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512483

ABSTRACT

Chemical soil fumigation (CSF) and reductive soil disinfestation (RSD) have been proven to be effective agricultural strategies to improve soil quality, restructure microbial communities, and promote plant growth in soil degradation remediation. However, it is still unclear how RSD and CSF ensure soil and plant health by altering fungal communities. Field experiments were conducted to investigate the effects of CSF with chloropicrin, and RSD with animal feces on soil properties, fungal communities and functional composition, and plant physiological characteristics were evaluated. Results showed that RSD and CSF treatment improved soil properties, restructured fungal community composition and structure, enhanced fungal interactions and functions, and facilitated plant growth. There was a significant increase in OM, AN, and AP contents in the soil with both CSF and RSD treatments compared to CK. Meanwhile, compared with CK and CSF, RSD treatment significantly increased biocontrol Chaetomium relative abundance while reducing pathogenic Neonectria relative abundance, indicating that RSD has strong inhibition potential. Furthermore, the microbial network of RSD treatment was more complex and interconnected, and the functions of plant pathogens, and animal pathogen were decreased. Importantly, RSD treatment significantly increased plant SOD, CAT, POD activity, SP, Ca, Zn content, and decreased MDA, ABA, Mg, K, and Fe content. In summary, RSD treatment is more effective than CSF treatment, by stimulating the proliferation of probiotic communities to further enhance soil health and plant disease resistance.


Subject(s)
Microbiota , Mycobiome , Panax , Soil/chemistry , Agriculture/methods , Soil Microbiology
5.
Adv Sci (Weinh) ; 11(16): e2303379, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38380561

ABSTRACT

Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.


Subject(s)
Chromatin Assembly and Disassembly , Colorectal Neoplasms , Organoids , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , Chromatin Assembly and Disassembly/genetics , Mice , Animals , Organoids/metabolism , Disease Models, Animal
6.
Microbiol Spectr ; 12(2): e0080223, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38230941

ABSTRACT

Reductive soil disinfestation (RSD) is an effective method to inhibit soilborne pathogens. However, it remains unclear how RSD combined with different types of organic materials affects the soil ecosystems of perennial plants. Pot experiments were conducted to investigate the effects of RSD incorporated with perilla (PF), alfalfa (MS), ethanol, and acetic acid on soil properties, enzyme activities, microbial communities and functions, and seedling growth. Results showed that RSD-related treatments improved soil properties and enzyme activities, changed microbial community composition and structure, enhanced microbial interactions and functions, and facilitated seedling growth. Compared with CK, RSD-related treatments increased soil pH, available nitrogen, and available potassium contents, sucrase and catalase activities, and decreased soil electric conductivity values. Meanwhile, RSD-related treatment also significantly reduced the relative abundance of Fusarium while increasing the relative abundance of Arthrobacter, Terrabacter, and Gemmatimonas. The reduction was more evident in PF and MS treatment, suggesting the potential for RSD combined with solid agricultural wastes to suppress pathogens. Furthermore, the microbial network of RSD-related treatment was more complex and interconnected, and the functions related to carbon, nitrogen, sulfur, and hydrogen cycling were significantly increased, while the functions of bacterial and fungal plant pathogens were decreased. Importantly, RSD-related treatments also significantly promoted seed germination and seedling growth. In summary, RSD combined with solid agricultural wastes is better than liquid easily degradable compounds by regulating the composition and function of microbial communities to improve soil quality and promote plant growth.IMPORTANCEReductive soil disinfestation (RSD) is an effective agricultural practice. We found that RSD combined with solid agricultural wastes is better than that of liquid easily degradable compounds, may improve soil quality and microbial community structure, inhibit the proliferation of pathogenic bacteria, and contribute to the growth of replanted crops. Thus, RSD combined with solid agricultural wastes is more effective than liquid easily degradable compounds.


Subject(s)
Microbiota , Soil , Soil/chemistry , Agriculture/methods , Bacteria , Nitrogen , Soil Microbiology
7.
Nat Immunol ; 25(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195702

ABSTRACT

Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.


Subject(s)
Melanoma , Receptor, Nerve Growth Factor , Humans , Receptor, Nerve Growth Factor/genetics , Receptor, Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Tropomyosin , Melanoma/therapy , Receptor, trkA/genetics , Receptor, trkA/metabolism , Cytoprotection , Immune Checkpoint Inhibitors , Memory T Cells , Immunosuppression Therapy , Immunotherapy , Receptors, Antigen, T-Cell
8.
Adv Sci (Weinh) ; 11(2): e2303489, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37964763

ABSTRACT

The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine play critical roles in protein synthesis and energy metabolism. Despite their widespread use as nutritional supplements, BCAAs' full effects on mammalian physiology remain uncertain due to the complexities of BCAA metabolic regulation. Here a novel mechanism linking intrinsic alterations in BCAA metabolism is identified to cellular senescence and the senescence-associated secretory phenotype (SASP), both of which contribute to organismal aging and inflammation-related diseases. Altered BCAA metabolism driving the SASP is mediated by robust activation of the BCAA transporters Solute Carrier Family 6 Members 14 and 15 as well as downregulation of the catabolic enzyme BCAA transaminase 1 during onset of cellular senescence, leading to highly elevated intracellular BCAA levels in senescent cells. This, in turn, activates the mammalian target of rapamycin complex 1 (mTORC1) to establish the full SASP program. Transgenic Drosophila models further indicate that orthologous BCAA regulators are involved in the induction of cellular senescence and age-related phenotypes in flies, suggesting evolutionary conservation of this metabolic pathway during aging. Finally, experimentally blocking BCAA accumulation attenuates the inflammatory response in a mouse senescence model, highlighting the therapeutic potential of modulating BCAA metabolism for the treatment of age-related and inflammatory diseases.


Subject(s)
Amino Acids, Branched-Chain , Senescence-Associated Secretory Phenotype , Animals , Mice , Amino Acids, Branched-Chain/metabolism , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Energy Metabolism , Mammals/metabolism
9.
Plant Dis ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37729653

ABSTRACT

Schisandra chinensis (Turcz.) Baill is a perennial liana, which is widely cultivated and used in China. In August 2022, Schisandra chinensis leaves with small light brown spots were found on plants growing in Fusong (127°28'E, 42°33'N) of China. There was 15% disease incidence and 50% disease severity of Schisandra chinensis in 2-ha fields of S. chinensis. As the disease progressed, the spots become darker and form round or irregular concentric circles. Leaves with brown spot symptoms were collected from the field. Leaf pieces (5 mm × 5 mm) were excised from lesion margins, surface disinfected with 75% ethanol for 1 min, followed by 1.5% sodium hypochlorite for 3 min, and incubated on Luria Bertani (LB) solid medium at 28°C for 24 hours. Eight cultures were isolated, and representative single colony (XWWZH) was selected from the pure cultures according to colony characteristics for observation The purified colonies were round, yellow, and slimy, cells were straight rod-shaped (0.40 to 0.52 × 1.12 to 1.69 µm) were observed. The isolate was Gram negative. It was positive for methyl red reaction, lysine decarboxylase reaction, gelatin hydrolysis reactionand sucrose utilization. It was negative for indole reaction and produced H2S. The bacterium was preliminarily identified as Pantoea agglomerans based on morphological and biochemical tests (Baird et al. 2007). The 16S rDNA and a portion of rpoB of strain XWWZH were amplified and sequenced. The sequences were submitted to GenBank. (Accession OP763753 and OQ813505, respectively). Phylogenetic trees were constructed based on the 16S rDNA and rpoB gene sequences. The sequences of strain XWWZH clustered with strains P. agglomerans deposited in GenBank. The pathogenicity was verified with non-wounded S. chinensis seedlings by punching holes with sterile needles and injecting a solution of 1 × 108 CFU/ml solution. Sterile ddH2O was injected in the control experiment. The inoculated seedlings were incubated in a greenhouse at 25°C with a relative humidity of 65 to 70%. Five to eight days after inoculation, inoculated leaves, exhibited symptoms which were morphologically identical to those of the originally infected leaves whereas control plants remained asymptomatic. The pathogenicity assays were repeated twice with the same results. The re-isolated pathogen had the same morphology and DNA sequences as the original isolate obtained from the field samples, completing Koch's postulates. Strains of P. agglomerans have been reported to severely infect many plants (Ren et al.2008; Lee et al. 2010; Yang et al. 2011; Guo et al. 2019; Gao et al, 2022), but to the best of our knowledge, this is the first report of a strain of P. agglomerans causing leaf blight on Schisandra chinensis in China. The identification of leaf blight caused by P. agglomerans will enable farmers to prevent and manage it ahead of time to reduce losses.

10.
Angew Chem Int Ed Engl ; 62(45): e202302888, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37380618

ABSTRACT

The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular π-π interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.

11.
Plant Dis ; 2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37272051

ABSTRACT

Schisandra chinensis (Turcz.) Baill. is a popular and widely cultivated medicinal herb in China, which has rich nutritional value and medicinal effect. In August 2022, leaves with oval and irregularly circular light brown spots from 2 to 10 mm wide with white centers were found on Schisandra chinensis growing in Fusong district (127°28'E, 42°33'N) of Jilin, China. The symptoms were observed in 20% of the plants of a 2 ha-1 field of Schisandra chinensis. About 50% of the leaf areas were affected. As the disease developed, the lesions grew larger and developed necrotic centers. Leaves with light brown spot symptoms from five plants were collected from the field. Five leaf pieces (3 to 5 mm2) were excised from lesion margins, surface sterilized based on Ju et al. (Ju et al. 2021), and incubated on potato dextrose agar (PDA) at 25°C. Six single spores were isolated from five independently infected isolates for pure culture using the single spore isolation technique (Zhang. 2003). Representative single spore isolate (ZWWZH) was selected from pure cultures for further culture. After 5 days, fluffy white aerial mycelium with pink pigmentation on the underside of the colony were observed on PDA. Mycelia became pinkish-brown as the culture aged. Microscopic observations showed the presence of elongated or pointed, and thick-walled macroconidia (n = 50), predominantly three septate, 3.40 to 7.50 × 40.34 to 61.29 µm were observed. Chlamydospores formed in chains within or on top of the mycelium. The primers ITS1/ITS4 (White et al. 1990) and Bt-2a/Bt-2b (Robideau et al., 2011) were used to amplify the internal transcribed spacer (ITS) rDNA and ß-tubulin (TUB2) region, respectively. The obtained sequences were submitted to GenBank under accession numbers for OQ629789 (ITS) and OQ803521(TUB2). BLASTn analysis of both ITS sequence and TUB2 sequence, revealed 100% and 99.92% sequence identity with F. acuminatum MT566456, MT560377 and KJ396328, respectively. The pathogen was identified as F. acuminatum based on morphological and molecular data. Pathogenicity tests were carried out in the greenhouse. Select five healthy Schisandra chinensis seedlings, each with each healthy leaf surfaces inoculated a 1 × 106 spores/mL solution, 3 wells on one side, 10 µL per well. Sterile ddH2O was used in the control experiment. The inoculated seedlings were incubated at 25°C with a relative humidity of 65 to 70% in a greenhouse. Four days after inoculation, all inoculated leaves exhibited the same symptoms as observed in the field, while the controls showed no symptoms. The experiment was repeated three more times with similar results. The re-isolated fungi from the inoculated plants had the same morphology and DNA sequences as the original isolate (ZWWZH) obtained from the field samples, completing Koch's postulates. To our knowledge, this is the first report of F. acuminatum causing leaf spot on Schisandra chinensis in China. F. acuminatum has seriously affected the quality of Schisandra chinensis production. The identification of leaf spot caused by F. acuminatum will enable farmers to identify practices to minimize disease on this important crop.

12.
RSC Adv ; 13(24): 16175-16184, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37260711

ABSTRACT

Recently, plasmonic nanoparticles (NPs) have attracted considerable attention as good candidates for enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs) owing to their localized surface plasmon resonance (LSPR). In this study, the effect of embedding colloidal gold nanoparticles (cAu NPs) in the ZnO electron transport layer (ETL) on the PCEs of wide band gap polymer-based inverted OSCs was investigated. The active layer was composed of a bulk heterojunction of conjugated polymer based on indacenodithieno[3,2-b]thiophene and 5,5'-di(thiophen-2-yl)-2,2'-bithiazole PIDTT-DTBTz as a donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. The PCE of the reference device was improved by 22% when 10 wt% cAu NPs were embedded in the ZnO ETL. The short circuit current density (JSC) and fill factor (FF) were the main photovoltaic parameters contributing to the PCE enhancement. An improved absorption in the active layer due to the LSPR of cAu NPs as well as efficient exciton dissociation and charge collection were found to be the reasons for the enhanced JSC while the increase in FF was mainly due to the suppressed traps and improved conductivity of the ZnO layer by the NPs.

13.
Macromol Rapid Commun ; 44(13): e2300102, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37166003

ABSTRACT

Organic solar cells (OSCs) have achieved great progress, driven by the rapid development of wide bandgap electron donors and narrow bandgap non-fullerene acceptors (NFAs). Among a large number of electron-accepting (A) building blocks, thiazole (Tz) and its derived fused heterocycles have been widely used to construct photovoltaic materials, especially conjugated polymers. Benefiting from the electron deficiency, rigidity, high planarity, and enhanced intra/intermolecular interactions of Tz-containing heterocycles, some related photovoltaic materials exhibit proper energy levels, optimized molecular aggregation, and active layer morphology, leading to excellent photovoltaic performance. This review focuses on the progress of Tz-based photovoltaic materials in the field of OSCs. First, the Tz-based donor and acceptor photovoltaic materials are reviewed. Then, the materials based on promising Tz-containing heterocycles, mainly including thiazolo[5,4-d]thiazole (TzTz), benzo[1,2-d:4,5-d']bis(thiazole) (BBTz), and benzo[d]thiazole (BTz) are summarized and discussed. In addition, the new emerging Tz-fused structures and their application in OSCs are introduced. Finally, perspectives and outlooks for the further development of Tz-containing heterocycle-based photovoltaic materials are proposed.


Subject(s)
Electrons , Polymers , Thiazoles
14.
Cell Res ; 33(7): 516-532, 2023 07.
Article in English | MEDLINE | ID: mdl-37169907

ABSTRACT

Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.


Subject(s)
Endothelial Cells , Thrombomodulin , Animals , Cellular Senescence , Liver Cirrhosis/drug therapy , Signal Transduction , Apoptosis , Mammals
15.
Front Microbiol ; 14: 1060282, 2023.
Article in English | MEDLINE | ID: mdl-37213491

ABSTRACT

Root exudates contain plant metabolites secreted by the roots into the soil, such as ginsenosides secreted by the ginseng root. However, little is known about ginseng root exudate and its impact on the chemical and microbial properties of soil. In this study, the effect of increasing concentrations of ginsenosides on the chemical and microbial properties of soil was tested. Chemical analysis and high-throughput sequencing techniques were used to evaluate the soil chemical properties and microbial characteristics following exogenous application of 0.1 mg·L-1, 1 mg·L-1, and 10 mg·L-1 ginsenosides. Ginsenosides application significantly altered soil enzyme activities; SOM-dominated physicochemical properties were significantly reduced which altered the composition and structure of the soil microbial community. In particular, treatment with 10 mg∙L-1 ginsenosides significantly increased the relative abundance of pathogenic fungi such as Fusarium, Gibberella and Neocosmospora. These findings indicate that ginsenosides in root exudates are important factors that may lead to increased deterioration of soil during ginseng cultivation and provided new research direction for the subsequent study on the mechanism of interaction between ginsenosides and soil microbial communities.

17.
J Clin Endocrinol Metab ; 108(9): 2282-2289, 2023 08 18.
Article in English | MEDLINE | ID: mdl-36881937

ABSTRACT

CONTEXT: Age of pubertal onset has been decreasing in many countries but there have been no data on pubertal development in Chinese children over the last decade. OBJECTIVE: The primary objective of the study was to evaluate the current status of sexual maturation in Chinese children and adolescents. Secondary objectives were to examine socioeconomic, lifestyle, and auxological associations with pubertal onset. METHODS: In this national, cross-sectional, community-based health survey, a multistage, stratified cluster random sampling method was used to select a nationally representative sample, consisting of 231 575 children and adolescents (123 232 boys and 108 343 girls) between 2017 and 2019. Growth parameters and pubertal staging were assessed by physical examination. RESULTS: Compared to 10 years previously, the median age of Tanner 2 breast development and menarche were similar at 9.65 years and 12.39 years respectively. However, male puberty occurred earlier with a median age of testicular volume ≥4 mL of 10.65 years. Pubertal onset did occur earlier at the extremes, with 3.3% of the girls with breast development at 6.5-6.99 years old, increasing to 5.8% by 7.5-7.99 years old. Early pubertal onset was also noted in boys, with a testicular volume ≥ 4 mL noted in 1.5% at 7.5-7.99 years, increasing to 3.5% at 8.5-8.99 years old. Obesity and overweight increased risk of developing earlier puberty relative to normal weight in both boys and girls. CONCLUSION: Over the past decade, pubertal development is occurring earlier in Chinese children. While the cause is multifactorial, overweight and obesity are associated with earlier puberty onset. The currently used normative pubertal data of precocious puberty may not be applicable to diagnose precocious puberty.


Subject(s)
Overweight , Puberty, Precocious , Child , Female , Humans , Male , Cross-Sectional Studies , East Asian People , Menarche , Obesity , Overweight/epidemiology , Puberty , Puberty, Precocious/epidemiology , Puberty, Precocious/etiology , Puberty, Precocious/diagnosis , Sexual Maturation
18.
Angew Chem Int Ed Engl ; 62(23): e202302874, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36995360

ABSTRACT

The emission efficiency of organic semiconductors (OSCs) often suffers from aggregation caused quenching (ACQ). An elegant solution is aggregation-induced emission (AIE), which constitutes the design of the OSC so that its morphology inhibits quenching π-π interactions and non-radiative motional deactivation. The light-emitting electrochemical cell (LEC) can be sustainably fabricated, but its function depends on motion of bulky ions in proximity of the OSC. It is therefore questionable whether the AIE morphology can be retained during LEC operation. Here, we synthesize two structurally similar OSCs, which are distinguished by that 1 features ACQ while 2 delivers AIE. Interestingly, we find that the AIE-LEC significantly outperforms the ACQ-LEC. We rationalize our finding by showing that the AIE morphology remains intact during LEC operation, and that it can feature appropriately sized free-volume voids for facile ion transport and suppressed non-radiative excitonic deactivation.

19.
Adv Mater ; 35(23): e2212084, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36924360

ABSTRACT

Nonfullerene-acceptor-based organic solar cells (NFA-OSCs) are now set off to the 20% power conversion efficiency milestone. To achieve this, minimizing all loss channels, including nonradiative photovoltage losses, seems a necessity. Nonradiative recombination, to a great extent, is known to be an inherent material property due to vibrationally induced decay of charge-transfer (CT) states or their back electron transfer to the triplet excitons. Herein, it is shown that the use of a new conjugated nitroxide radical polymer with 2,2,6,6-tetramethyl piperidine-1-oxyl side groups (GDTA) as an additive results in an improvement of the photovoltaic performance of NFA-OSCs based on different active layer materials. Upon the addition of GDTA, the open-circuit voltage (VOC ), fill factor (FF), and short-circuit current density (JSC ) improve simultaneously. This approach is applied to several material systems including state-of-the-art donor/acceptor pairs showing improvement from 15.8% to 17.6% (in the case of PM6:Y6) and from 17.5% to 18.3% (for PM6:BTP-eC9). Then, the possible reasons behind the observed improvements are discussed. The results point toward the suppression of the CT state to triplet excitons loss channel. This work presents a facile, promising, and generic approach to further improve the performance of NFA-OSCs.

20.
Mater Horiz ; 10(4): 1292-1300, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36786547

ABSTRACT

Developing efficient and stable organic photovoltaics (OPVs) is crucial for the technology's commercial success. However, combining these key attributes remains challenging. Herein, we incorporate the small molecule 2-((3,6-dibromo-9H-carbazol-9-yl)ethyl)phosphonic acid (Br-2PACz) between the bulk-heterojunction (BHJ) and a 7 nm-thin layer of MoO3 in inverted OPVs, and study its effects on the cell performance. We find that the Br-2PACz/MoO3 hole-extraction layer (HEL) boosts the cell's power conversion efficiency (PCE) from 17.36% to 18.73% (uncertified), making them the most efficient inverted OPVs to date. The factors responsible for this improvement include enhanced charge transport, reduced carrier recombination, and favourable vertical phase separation of donor and acceptor components in the BHJ. The Br-2PACz/MoO3-based OPVs exhibit higher operational stability under continuous illumination and thermal annealing (80 °C). The T80 lifetime of OPVs featuring Br-2PACz/MoO3 - taken as the time over which the cell's PCE reduces to 80% of its initial value - increases compared to MoO3-only cells from 297 to 615 h upon illumination and from 731 to 1064 h upon continuous heating. Elemental analysis of the BHJs reveals the enhanced stability to originate from the partially suppressed diffusion of Mo ions into the BHJ and the favourable distribution of the donor and acceptor components induced by the Br-2PACz.

SELECTION OF CITATIONS
SEARCH DETAIL
...