Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Opt Lett ; 49(9): 2441-2444, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691739

ABSTRACT

Three-dimensional optical waveguides with hollow channels have many advantages, such as strong mode confinement and excellent dispersion control ability. Femtosecond laser enhanced wet etching is widely used to fabricate hollow channel waveguides in transparent dielectric materials. We propose a method for fabricating hollow channel waveguides in YAG using femtosecond laser enhanced wet etching with a simpler fabrication process and shorter etching time compared with the previous work. After 90 h of etching, a series of helical hollow channel waveguides with a length of 5 mm and a radius of 32 µm were successfully fabricated. At a pitch of 3 µm, the waveguide exhibited a loss (including coupling loss and transmission loss) as low as 0.68 dB at 1030 nm. The helical hollow channel waveguide also exhibited exceptional isotropic light confinement capability and remarkable supercontinuum-generating properties. Moreover, helical hollow channel waveguides with a radius of 2 µm were successfully fabricated. According to simulations, waveguides of such size can effectively control dispersion. Our work presents, to our knowledge, a novel approach to fabricating hollow channel waveguides with arbitrary lengths using femtosecond laser-enhanced wet etching.

2.
Phytomedicine ; 128: 155543, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657364

ABSTRACT

BACKGROUND: Ershiwuwei Zhenzhu pills was originally recorded in the Tibetan medical book Si Bu Yi Dian in the 8th century AD and is now included in the Pharmacopoeia of the People's Republic of China (2020). The pills can calm the nerves and open the mind as well as treat cerebral ischemia reperfusion injury, stroke, hemiplegia. However, its quality standards have not yet been established, and the therapeutic effect on cerebral ischemia by regulating the mitochondrial apoptosis pathway has not been elucidated. STUDY DESIGN AND METHODS: LC-MS was used to establish quality standards for Ershiwuwei Zhenzhu pills. Metabonomics, molecular docking, neuroethology, cerebral infarction ratio, pathological detection of diencephalon, cortex, and hippocampus, and molecular biology techniques were used to reveal the mechanism of the pills in regulating the mitochondrial apoptosis pathway to treat cerebral ischemia. RESULTS: The contents of 20 chemical components in Ershiwuwei Zhenzhu pills from 12 batches and 8 manufacturers was determined for the first time. Eleven differential metabolites and three metabolic pathways, namely, fructose and mannose metabolism, glycerophospholipid metabolism, and purine metabolism, were identified by metabonomics. The pills improved the neuroethology abnormalities of MCAO rats and the pathological damage in the diencephalon and decreased the ratio of cerebral infarction. It also significantly reduced the mRNA expression of AIF, Apaf-1, cleared caspase8, CytC, and P53 mRNA in the brain tissue and the protein expression of Apaf-1 and CYTC and increased the protein expression of NDRG4. CONCLUSION: In vitro quantitative analysis of the in vitro chemical components of Ershiwuwei Zhenzhu pills has laid the foundation for improving its quality control. The potential mechanism of the pills in treating cerebral ischemia may be related to the Apaf-1/CYTC/NDRG4 apoptosis pathway. This work provides guidance for clinical drug use for patients.


Subject(s)
Apoptotic Protease-Activating Factor 1 , Brain Ischemia , Drugs, Chinese Herbal , Metabolomics , Rats, Sprague-Dawley , Animals , Brain Ischemia/drug therapy , Male , Drugs, Chinese Herbal/pharmacology , Rats , Apoptotic Protease-Activating Factor 1/metabolism , Apoptosis/drug effects , Chromatography, Liquid , Molecular Docking Simulation , Medicine, Tibetan Traditional , Mass Spectrometry , Liquid Chromatography-Mass Spectrometry
3.
Inflammation ; 47(2): 789-806, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446361

ABSTRACT

Altered cardiac innate immunity is highly associated with the progression of cardiac disease states and heart failure. S100A8/A9 is an important component of damage-associated molecular patterns (DAMPs) that is critically involved in the pathogenesis of heart failure, thus considered a promising target for pharmacological intervention. In the current study, initially, we validated the role of S100A8/A9 in contributing to cardiac injury and heart failure via the overactivation of the ß-adrenergic pathway and tested the potential use of paquinimod as a pharmacological intervention of S100A8/A9 activation in preventing cardiac dysfunction, collagen deposition, inflammation, and immune cell infiltration in ß-adrenergic overactivation-mediated heart failure. This finding was further confirmed by the cardiomyocyte-specific silencing of S100A9 via the use of the adeno-associated virus (AAV) 9-mediated short hairpin RNA (shRNA) gene silencing system. Most importantly, in the assessment of the underlying cellular mechanism by which activated S100A8/A9 cause aggravated progression of cardiac fibrosis and heart failure, we discovered that the activated S100A8/A9 can promote fibroblast-macrophage interaction, independent of inflammation, which is likely a key mechanism leading to the enhanced collagen production. Our results revealed that targeting S100A9 provides dual beneficial effects, which is not only a strategy to counteract cardiac inflammation but also preclude cardiac fibroblast-macrophage interactions. The findings of this study also indicate that targeting S100A9 could be a promising strategy for addressing cardiac fibrosis, potentially leading to future drug development.


Subject(s)
Calgranulin B , Calgranulin B/metabolism , Calgranulin B/genetics , Animals , Mice , Heart Failure/metabolism , Heart Failure/prevention & control , Fibroblasts/metabolism , Fibroblasts/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Calgranulin A/metabolism , Macrophages/metabolism , Macrophages/drug effects , Fibrosis , Inflammation/metabolism , Adrenergic beta-Agonists/pharmacology
4.
Wound Repair Regen ; 32(3): 301-313, 2024.
Article in English | MEDLINE | ID: mdl-38308577

ABSTRACT

Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to  photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent  studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.


Subject(s)
Anti-Bacterial Agents , Bandages , Hydrogels , Photochemotherapy , Photosensitizing Agents , Wound Healing , Wound Infection , Hydrogels/pharmacology , Photosensitizing Agents/pharmacology , Humans , Photochemotherapy/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Healing/drug effects , Bacterial Infections/drug therapy
5.
Mol Genet Genomic Med ; 12(1): e2287, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37905352

ABSTRACT

OBJECTIVE: To analyze the clinical and genetic characteristics of a patient with long QT syndrome type 14 (long QT syndrome-14, LQT14, OMIM # 616247) caused by a de novo CALM1 mutation. METHODS: The clinical data of the patient were collected, next-generation sequencing technology was used to determine the exome gene sequence of the patient, and the suspected pathogenic locus was verified by Sanger sequencing. RESULTS: A 5-year and 9-month-old girl was admitted to the hospital due to a syncopal episode. During the attack, the main symptoms were loss of consciousness, cyanosis of the face and lips, and weakness of limbs. The child had multiple seizures in the past, all of which occurred after emotional excitement and activity. She was diagnosed with epilepsy for more than 3 years, but the effect of antiepileptic treatment was not satisfactory. The electrocardiogram was normal in the past. A month ago, convulsions occurred again after exercise, and the electrocardiogram showed QTc 496 ms. The treadmill test showed a significant prolongation of QTc after exercise, and the genetic results suggested a new heterozygous variant of CALM1, c.395A>G; p. (Asp132Gly). Consequently, she was diagnosed with LQT14 and treated with propranolol. During a follow-up of 15 months, there were no seizures or syncope. CONCLUSIONS: This patient had multiple episodes of convulsions or syncope after emotional stimulation or activity, with intermittent prolongation of the QTc on routine ECG, marked prolongation of the QTc after exercise, and T-wave alternans, which differed from the LQT14 phenotype caused by the previous CALM1 mutation.


Subject(s)
Long QT Syndrome , Child , Female , Humans , Infant , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Long QT Syndrome/drug therapy , Syncope/genetics , Syncope/diagnosis , Electrocardiography/adverse effects , Mutation , Seizures
6.
Article in English | MEDLINE | ID: mdl-38082038

ABSTRACT

Bisphenol A (BPA) is a typical endocrine disruptor, and the use of bisphenol B (BPB) as a substitute is gradually increasing. Some studies have shown that BPB also has endocrine disrupting effects, but its effects on the early stages of fish growth and development have not been reported. In this paper, zebrafish embryos were exposed to different concentrations of BPB until the 6th day post fertilization (dpf), and the toxic effects of BPB on the early development of zebrafish and the possible molecular mechanisms were investigated. The results showed that BPB exposure at 10, 100, and 1000 µg/L induced developmental toxic effects such as early neurotoxicity and cardiovascular toxicity in zebrafish, and the toxic effects were positively correlated with the degree of oxidative damage. These adverse results were ameliorated by the classical antioxidant N-acetyl-L-cysteine (NAC), suggesting the involvement of oxidative stress in BPB-induced early developmental toxicity. The above data suggest that BPB exposure increases oxidative damage and suppresses the expression of genes critical for early neurological and cardiovascular development, ultimately leading to early developmental toxicity in juvenile zebrafish. This study contributes to broadening our understanding of the toxic effects of BPB and provides a basic theoretical basis for the next management support of bisphenol analogs.

7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1211-1216, 2023 Oct 10.
Article in Chinese | MEDLINE | ID: mdl-37730219

ABSTRACT

OBJECTIVE: To explore the clinical and genetic characteristics of eight children with Primary hypertrophic cardiomyopathy (HCM). METHODS: Eight children with HCM admitted to the Department of Cardiology of Henan Children's Hospital from January 2018 to December 2021 were selected as the study subjects. Clinical data of the children were collected. Whole exome sequencing was carried out on two children, and trio whole exome sequencing was carried out on the remainder 6 children. Sanger sequencing was used to verify the candidate variants in the children and their parents, and the pathogenicity of the variants was evaluated based on the guidelines from the American College of Medical Genetics and Genomics (ACMG). RESULTS: The patients had included 5 males and 3 females, with their ages ranging from 5 to 13 years old. The average age of diagnosis was (7.87 ± 4.8) years old, and the cardiac phenotype showed non-obstructive HCM in all of the patients. WES has identified variants of the MYH7 gene in 4 children, including c.2155C>T (p.Arg719Trp), c.1208G>A (p.Arg403Gln), c.1358G>A (p.Arg453His), and c.1498G>A (p.Glu500Lys). Based on the guidelines from the ACMG, the first 3 variants were classified as pathogenic, while c.1498G>A (p.Glu500Lys) was classified as likely pathogenic (PM1+PM2_Supporting+PM6+PP3), which was also unreported previously. The remaining four children had all harbored maternal variants, including MYL2: c.173G>A (p.Arg58Gln; classified as pathogenic), TPM1: c.574G>A (p.Glu192Lys) and ACTC1: c.301G>A (p.Glu101Lys)(both were classified as likely pathogenic), and MYBPC3: c.146T>G (p.Ile49Ser; classified as variant of uncertain significance). Seven children were treated with 0.5 ~ 3 mg/(kg·d) propranolol, and their symptoms had improved significantly. They were followed up until September 30, 2022 without further cardiac event. CONCLUSION: Genetic testing can clarify the molecular basis for unexplained cardiomyopathy and provide a basis for clinical diagnosis and genetic counseling. Discovery of the c.1498G>A (p.Glu500Lys) variant has also expanded the spectrum of MYH7 gene mutations underlying HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Cytoskeletal Proteins , Female , Male , Humans , Child , Child, Preschool , Adolescent , Family , Genetic Counseling , Genetic Testing , Cardiomyopathy, Hypertrophic/genetics
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(8): 960-965, 2023 Aug 10.
Article in Chinese | MEDLINE | ID: mdl-37532495

ABSTRACT

OBJECTIVE: To explore the clinical and genetic characteristics of five children with Catecholaminergic polymorphic ventricular tachycardia (CPVT). METHODS: Five children with clinical manifestations consistent with CPVT admitted to the Department of Cardiology of Children's Hospital Affiliated to Zhengzhou University from November 2019 to November 2021 were selected as the study subjects. Their clinical data were collected. Potential variants were detected by whole exome sequencing, and Sanger sequencing was used to verify the candidate variants. All patients were treated with ß-blocker propranolol and followed up. RESULTS: All patients had developed the disease during exercise and presented with syncope as the initial clinical manifestation. Electrocardiogram showed sinus bradycardia. The first onset age of the 5 patients were (10.4 ± 2.19) years, and the time of delayed diagnosis was (1.6 ± 2.19) years. All of the children were found to harbor de novo heterozygous missense variants of the RYR2 gene, including c.6916G>A (p.V2306I), c.527G>C (p.R176P), c.12271G>A (p.A4091T), c.506G>T (p.R169L) and c.6817G>A (p.G2273R). Among these, c.527G>C (p.R176P) and c.6817G>A (p.G2273R) were unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.527G>C (p.R176P) was classified as a pathogenic variant (PS2+PM1+PM2_Supporting+PM5+PP3+PP4), and the c.6817G>A (p.G2273R) was classified as a likely pathogenic variant (PS2+PM2_Supporting+PP3+PP4). The symptoms of all children were significantly improved with the propranolol treatment, and none has developed syncope during the follow up. CONCLUSION: Discovery of the c.527G>C (p.R176P) and c.6817G>A (p.G2273R) variants has expanded the mutational spectrum of the RYR2 gene. Genetic testing of CPVT patients can clarify the cause of the disease and provide a reference for their genetic counseling.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Child , Humans , Mutation , Propranolol , Ryanodine Receptor Calcium Release Channel/genetics , Syncope , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/diagnosis , United States
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(8): 990-997, 2023 Aug 10.
Article in Chinese | MEDLINE | ID: mdl-37532500

ABSTRACT

OBJECTIVE: To analyze the clinical and genetic characteristics of a child with restricted cardiomyopathy (RCM) and phenylketonuria (PKU), and summarize the clinical characteristics and genetic diversity of RCM in children through a literature review. METHODS: A child with RCM in conjunct with PKU who was admitted to the Children's Hospital Affiliated to Zhengzhou University in June 2020 due to edema of eyelids and lower limbs for 1 year and aggravation for over 1 month was selected as the study subject. Relevant clinical data were collected. Peripheral blood samples of the child and his parents were collected for whole exome sequencing (WES). Candidate variants were validated by Sanger sequencing and bioinformatic analysis. Childhood, TNNI3 gene and restricted cardiomyopathy were used as the keywords to search the Wanfang data knowledge service platform, Chinese Journal Full-text database and PubMed database, and the search period was limited to from the time of establishment till August 2022. Clinical manifestations and characteristics of the TNNI3 gene variants were summarized. RESULTS: The child, a 2-year-old-and-4-month-old male, had normal intelligence, facial features and normal hair and skin color, but his motor and physical development was delayed, in addition with edema of bilateral eyelids and lower limbs. The results of WES and Sanger sequencing revealed that he has harbored compound heterozygous variants of the PAH gene, namely c.331C>T (p.R111X) and c.940C>A (p.P341T), which were inherited from his father and mother, respectively. In addition, he has also harbored a de novo heterozygous variant of c.508C>T (p.R170W) of the TNNI3 gene. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the TNNI3: c.508C>T (p.R170W) was classified as a pathogenic variant (PS2+PS4+PM2_Supporting+PM5), PAH: c.331C>T (p.R111X) as a pathogenic variant (PVS1+PM2_Supporting+PM3+PP4), and c.940C>A (p.P341T) as a likely pathogenic variant (PM2_Supporting+PM3+PM5+PP4). In total 30 children with RCM caused by TNNI3 gene variants were retrieved, with a male-to-female ratio of 1 : 1.55 and manifestations including heart failure, sinus rhythm, bi-atrial enlargement, ST-T wave change, ventricular restricted filling, and decreased ventricular diastolic function. In total 16 variants of the TNNI3 gene were identified, among which c.575G>A was the most common, and all cases had conformed to an autosomal dominant inheritance. CONCLUSION: Phenylalanine hydroxylase deficiency and RCM are rare diseases with complex clinical manifestations. The PAH: c.331C>T (p.R111X)/c.940C>A (p.P341T) and TNNI3: c.508C>T (p.R170W) variants probably underlay the RCM and PKU in this child.


Subject(s)
Cardiomyopathy, Restrictive , Phenylketonurias , Humans , Male , Computational Biology , Diastole , Mutation , Child, Preschool
10.
Nanoscale ; 15(34): 13965-13970, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37565589

ABSTRACT

Metasurface has attracted massive interest owing to its ability to control light arbitrarily in a wide range of applications, such as high-speed imaging, optical interconnection, and spectroscopy. Here we propose a free space light modulator combined with a gold grating metasurface based on lithium niobate (LiNbO3). The quasi-bound states in the continuum (quasi-BIC) are achieved in the metasurface. In addition, the plasmonic quasi-BIC and the guided-mode resonance (GMR) can be modulated by controlling the polarization of the incident light without any geometric adjustment. Thus, the working wavelength range from 1480 nm to 1620 nm was achieved, and the maximum resonance depth reached about 51% at the resonant wavelength. In addition, the insertion loss of the device was -2.8 dB at a wavelength of 1510 nm. Furthermore, the dynamic modulation speed reached up to 190 MHz and the highest signal-to-noise ratio (SNR) could reach about 49 dB at a frequency of 65 MHz. The data showed potential for the material for applications such as near-infrared imaging, beam steering, and free-space optical communication links.

11.
Front Immunol ; 14: 1101918, 2023.
Article in English | MEDLINE | ID: mdl-36776839

ABSTRACT

Sepsis is one of the major causes of death in the hospital worldwide. The pathology of sepsis is tightly associated with dysregulation of innate immune responses. The contribution of macrophages, neutrophils, and dendritic cells to sepsis is well documented, whereas the role of natural killer (NK) cells, which are critical innate lymphoid lineage cells, remains unclear. In some studies, the activation of NK cells has been reported as a risk factor leading to severe organ damage or death. In sharp contrast, some other studies revealed that triggering NK cell activity contributes to alleviating sepsis. In all, although there are several reports on NK cells in sepsis, whether they exert detrimental or protective effects remains unclear. Here, we will review the available experimental and clinical studies about the opposing roles of NK cells in sepsis, and we will discuss the prospects for NK cell-based immunotherapeutic strategies for sepsis.


Subject(s)
Immunity, Innate , Sepsis , Humans , Killer Cells, Natural , Macrophages , Neutrophils/pathology
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(3): 337-343, 2023 Mar 10.
Article in Chinese | MEDLINE | ID: mdl-36854411

ABSTRACT

OBJECTIVE: To explore the clinical phenotype and genetic features of a child with dilated cardiomyopathy (DCM). METHODS: Clinical data of the child who had presented at the Zhengzhou Children's Hospital on April 28, 2020 was collected. Trio-whole exome sequencing (trio-WES) was carried out for the child and her parents, and candidate variants were validated by Sanger sequencing. "FHL2" was taken as the key word to retrieve related literature from January 1, 1997 to October 31, 2021 in the PubMed database and was also searched in the ClinVar database as a supplement to analyze the correlation between genetic variants and clinical features. RESULTS: The patient was a 5-month-old female infant presented with left ventricular enlargement and reduced systolic function. A heterozygous missense variant c.391C>T (p.Arg131Cys) in FHL2 gene was identified through trio-WES. The same variant was not detected in either of her parents. A total of 10 patients with FHL2 gene variants have been reported in the literature, 6 of them had presented with DCM, 2 with hypertrophic cardiomyopathy (HCM), and 2 with sudden unexplained death (SUD). Phenotypic analysis revealed that patients with variants in the LIM 3 domain presented hypertrophic cardiomyopathy and those with variants of the LIM 0~2 and LIM 4 domains had mainly presented DCM. The c.391C>T (p.Arg131Cys) has been identified in a child with DCM, though it has not been validated among the patient's family members. Based on the guidelines of the American College of Medical Genetics and Genomics, the c.391C>T(p.Arg131Cys) variant was re-classified as likely pathogenic (PS2+PM2_Supporting+PP3+PP5). CONCLUSION: The heterozygous missense variant of c.391C>T (p.Arg131Cys) in the FHL2 gene probably predisposed to the DCM in this child, which has highlighted the importance of WES in the clinical diagnosis and genetic counseling.


Subject(s)
Cardiomyopathy, Dilated , Cardiomyopathy, Hypertrophic , Female , Humans , Cardiomyopathy, Dilated/genetics , Genetic Counseling , Genomics , Heterozygote , Muscle Proteins/genetics , Transcription Factors , LIM-Homeodomain Proteins/genetics
13.
Front Pharmacol ; 14: 1293097, 2023.
Article in English | MEDLINE | ID: mdl-38239194

ABSTRACT

Purpose: This study reviews the use of mirabilite in traditional Chinese medicine and various preparations by describing its chemical composition, processing methods, pharmacology, toxicology, and clinical research progress. Methods: The applications and processing methods of mirabilite are searched in traditional and modern Chinese medical writings, and the articles on chemical composition, pharmacological effects, toxicology, and clinical studies of mirabilite and its combinations in PubMed and China Knowledge Network are reviewed, sorted, and analyzed. Results: The main chemical component of mirabilite is sodium sulfate decahydrate (Na2SO4·10H2O), followed by small amounts of sodium chloride, magnesium sulfate, calcium sulfate, and other inorganic salts. This study systematically organizes the history of the medicinal use of mirabilite in China for more than 2,000 years. This mineral has been used by nine Chinese ethnic groups (Han, Dai, Kazakh, Manchu, Mongolian, Tujia, Wei, Yi, and Tibetan) in a large number of prescription preparations. The Pharmacopoeia of the People's Republic of China (2020 edition) records stated that mirabilite can be used for abdominal distension, abdominal pain, constipation, intestinal carbuncle, external treatment of breast carbuncle, hemorrhoids, and other diseases. The traditional processing methods of mirabilite in China include refining, boiling, sautéing, filtration after hot water blistering, and firing. Since the Ming Dynasty, processing by radish has become the mainstream prepared method of mirabilite. Mirabilite can exhibit anti-inflammatory detumescence effects by inhibiting AMS, LPS, IL-6, IL-10, TNF-α, and NO levels and attenuating the upregulation of TNF-α and NF-κB genes. It can promote cell proliferation and wound healing by increasing the production of cytokines TGFß1 and VEGF-A and gastrointestinal motility by increasing the release of vasoactive intestinal peptide, substance P, and motilin. It can increase the expression of low-density lipoprotein receptor and AKT phosphorylation in the liver by up-regulating bile acid synthesis genes; reduce TRB3 expression in the liver, FGF15 co-receptor KLB expression, and FGF15 production in the ileum, and JNK signal transduction; and increase the transcription of CYP7A1 to achieve a cholesterol-lowering effect. Mirabilite also has a variety of pharmacological effects, such as regulating intestinal flora, anti-muscle paralysis, anti-colon cancer, promoting water discharge, and analgesic. Only a few toxicological studies on mirabilite are available. External application of mirabilite can cause local skin to be flushed or itchy, and its oral administration is toxic to neuromuscular cells. The sulfur ions of its metabolites can also be toxic to the human body. At present, no pharmacokinetic study has been conducted on mirabilite as a single drug. This mineral has been widely used in the clinical treatment of inflammation, edema, wound healing, digestive system diseases, infusion extravasation, hemorrhoids, skin diseases, breast accumulation, muscle paralysis, intestinal preparation before microscopic examination, and other diseases and symptoms. Conclusion: Mirabilite has good application prospects in traditional Chinese medicine and ethnomedicine. In-depth research on its processing methods, active ingredients, quality control, pharmacokinetics, pharmacological and toxicological mechanisms, and standardized clinical application is needed. This paper provides a reference for the application and research of mirabilite in the future.

14.
Front Oncol ; 12: 1020255, 2022.
Article in English | MEDLINE | ID: mdl-36249015

ABSTRACT

Gastric cancer (GC), a malignant tumor of digestive tract, is characterized by a high death rate. Thus, it is of particular importance to clarify the mechanisms of GC and gain new molecular targets for the sake of preventing and treating GC. It was reported that long non-coding RNAs (IncRNAs) are prognostic factors to cancer. Ferroptosis refers to a process of programmed cell death dependent on iron. This study sets out to investigate the expression and function of ferroptosis-related lncRNA (FRlncRNA) in GC. TCGA datasets offered RNA-seq data for 375 GC patients and clinical data for 443 GC patients. Based on Pearson's correlation analysis, we studied their expression and identified the FRlncRNAs. Differentially expressed prognosis related to FRlncRNA were determined with the help of the Wilcoxon test and univariate Cox regression analysis. To evaluate the accuracy of the prognostic capacity, researchers used the Kaplan-Meier technique, as well as univariate and multivariate Cox regression and receiver operating characteristic (ROC) curve studies. We also carried out the real-time PCR and CCK8 assays to examine the expression and function of FRlncRNA. In this study, we identified 50 ferroptosis-related DEGs which were involved in tumor progression. In addition, we identified 33 survival-related FRlncRNAs. Among them, lncRNA associated with SART3 regulation of splicing(LASTR) was confirmed to be highly expressed in GC specimens compared to non-tumor specimens in this cohort. Survival assays illuminated that the high LASTR expression predicted a shorter overall survival and progression-free survival of GC patients. Based on multivariate Cox regression analyses, it was confirmed that the GC had a worse chance of surviving the disease overall if their tumors expressed LASTR, which was an independent prognostic indication. Then, Loss-of-function tests showed that knocking down LASTR had a significant effect on reducing the proliferation of GC cells. Finally, we found that the expression of LASTR was negatively associated with CD8 T cells, T cells, Th17 cells, and T helper cells. Overall, our findings identified a novel survival-related FRlncRNA, LASTR which possibly can serve as a novel prognostic biomarker predicting response to cancer immunotherapy and therapeutic target for GC patients.

15.
Nanoscale Adv ; 4(14): 3043-3053, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-36133513

ABSTRACT

Recently, the need for antibacterial dressings has amplified because of the increase of traumatic injuries. However, there is still a lack of ideal, natural antibacterial dressings that show an efficient antibacterial property with no toxicity. Polyimide (PI) used as an implantable and flexible material has been recently reported as a mixture of particles showing more desirable antibacterial properties. However, we have identified a novel type of natural polyimide (PI) fiber that revealed antibacterial properties by itself for the first time. The PI fiber material is mainly composed of C, N, and O, and contains a small amount of Ca and Cl; the characteristic peaks of polyimide appear at 1774 cm-1, 1713 cm-1, 1370 cm-1, 1087 cm-1, and 722 cm-1. PI fibers displayed significant antibacterial activities against Escherichia coli (as a Gram-negative bacteria model) and methicillin-resistant Staphylococcus aureus (MRSA, as a Gram-positive bacteria model) according to the time-kill kinetics in vitro, and PI fibers damaged both bacterial cell walls directly. PI fibers efficiently ameliorated a local infection in vivo, inhibited the bacterial burden, decreased infiltrating macrophages, and accelerated wound healing in an E. coli- or MRSA-infected wound model. In conclusion, PI fibers used in the present study may act as potent antibacterial dressings protecting from MRSA or E. coli infections and as promising candidates for antimicrobial materials for trauma and surgical applications.

16.
Front Med (Lausanne) ; 9: 944950, 2022.
Article in English | MEDLINE | ID: mdl-36111109

ABSTRACT

Background: Dilated cardiomyopathy (DCM), which is a major cause of heart failure, is a primary cardiac muscle disease with high morbidity and mortality rates. DCM is a genetically heritable disease and more than 10 gene ontologies have been implicated in DCM. CDH2 encodes N-cadherin and belongs to a superfamily of transmembrane proteins that mediate cell-cell adhesion in a calcium-dependent manner. Deficiency of CDH2 is associated with arrhythmogenic right ventricular cardiomyopathy (OMIM: 618920) and agenesis of the corpus callosum, cardiac, ocular, and genital syndrome (OMIM: 618929). However, there have been no reports of isolated DCM associated with CDH2 deficiency. Methods: We performed whole exome sequencing in a 12-year-old girl with non-syndromic DCM and her unaffected parents. Variants in both known DCM-related genes and novel candidate genes were analyzed and pathogenicity confirmation experiments were performed. Results: No pathogenic/likely pathogenic variant in known DCM-related genes was identified in the patient. We found a de novo variant in a candidate gene CDH2 in the patient, namely, c.474G>C/p.Lys158Asn (NM_001792.5). This variant has not been reported in the ClinVar or Human Gene Mutation Database (HGMD). CDH2 p.Lys158Asn was found in the conserved domain of N-cadherin, which is associated with the hydrolysis of the precursor segment and interference with adhesiveness. Furthermore, we tested the expression and efficiency of cell-cell adhesion while overexpressing the CDH2 Lys158Asn mutant and two previously reported variants in CDH2 as positive controls. The adhesion efficiency was considerably reduced in the presence of the mutated CDH2 protein compared with wild-type CDH2 protein, which suggested that the mutated CDH2 protein's adhesion capacity was impaired. The variant was probably pathogenic after integrating clinical manifestations, genetic analysis, and functional tests. Conclusion: We identified a CDH2 variant in DCM. We observed a new clinical symptom associated with N-cadherin deficiency and broadened the genetic spectra of DCM.

17.
Medicine (Baltimore) ; 101(29): e29826, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35866808

ABSTRACT

Gastrointestinal surgery is often challenging because of unexpected postoperative complications such as pouchitis, malabsorption, anastomotic leak, diarrhea, inflammatory responses, and life-threatening infections. Moreover, the gut microbiota has been shown to be associated with the complications described above. Major intestinal reconstruction, such as Roux-en-Y gastric bypass (RYGB) and ileal pouch-anal anastomosis surgery, could result in altered gut microbiota, which might lead to some of the benefits of these procedures but could also contribute to the development of postsurgical complications. Moreover, postsurgical reestablishment of the gut microbiota population is still poorly understood. Here, we review evidence outlining the role of gut microbiota in complications of gastrointestinal surgery, especially malabsorption, anastomotic leak, pouchitis, and infections. In addition, this review will evaluate the risks and benefits of live biotherapeutics in the complications of gastrointestinal surgery.


Subject(s)
Gastric Bypass , Gastrointestinal Microbiome , Pouchitis , Anastomotic Leak/etiology , Gastric Bypass/methods , Gastrointestinal Microbiome/physiology , Humans , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Prognosis
18.
Front Microbiol ; 13: 802409, 2022.
Article in English | MEDLINE | ID: mdl-35572636

ABSTRACT

Background: Host-microbiota crosstalk has been implicated in multiple host metabolic pathway axes that regulate intestinal barrier function. Although constitutive cytochrome P4501A1 (CYP1A1) expression perturbs the microbiome-derived autoregulatory loop following enteric infection, little is known about the role of host CYP1A1 in modulating gut microbiome-mediated signaling during methicillin-resistant Staphylococcus aureus (MRSA)-induced abdominal sepsis and its effects on intestinal barrier integrity. Methods: Abdominal sepsis was induced by the intraperitoneal injection of MRSA in mice. The effect of CYP1A1 deficiency on gut barrier integrity was investigated using RNA sequencing, microbiome analyses, and targeted metabolomics. The microbiota-produced metabolites were validated in patients with sepsis and persistent MRSA infection. Results: Mice lacking CYP1A1 exhibited an altered gut microbiome, a reduced metabolic shift from lysine to cadaverine in the caecal contents and antimicrobial molecule production (Retnlb, Gbp7, and Gbp3), and they were protected against gut barrier disruption when subjected to MRSA challenge. These beneficial effects were validated in aryl hydrocarbon receptor (AHR) knockout (KO) mice by cohousing with CYP1A1 KO mice and abrogated after supplementation with cadaverine or Enterococcus faecalis, the primary microbiota genus for cadaverine synthesis. Antibiotic-driven gut dysbacteriosis impaired the survival benefit and disrupted the intestinal barrier integrity in CYP1A1 KO mice after MRSA infection. Furthermore, increased cadaverine levels in feces and serum were detected in critically ill patients with gut leakiness during persistent MRSA infection, whereas cadaverine was not detected in healthy controls. Additionally, microbiota-derived cadaverine induced enterocyte junction disruption by activating the histamine H4 receptor/nuclear factor-κB/myosin light-chain kinase signaling pathway. Conclusion: This study revealed the unexpected function of host CYP1A1 in microbiota-mediated cadaverine metabolism, with crucial consequences for dysbacteriosis following MRSA-induced abdominal sepsis, indicating that inhibiting CYP1A1 or blocking cadaverine-histamine H4 receptor signaling could be a potential therapeutic target against abdominal sepsis. Clinical Trial Registration: [http://www.chictr.org.cn/index.aspx], identifier [ChiCTR1800018646].

19.
Sci Total Environ ; 821: 153471, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35101490

ABSTRACT

As a kind of emerging pollutant, microplastics (MPs) play an important role as a carrier for pollutant migration in the water environment. Carried by the MPs, benzotriazoles, and benzothiazoles (collectively referred to as BTs)1 are ubiquitous water contaminants. In this paper, the adsorption behavior of BTs on polyvinyl chloride (PVC) MPs was first studied systematically to explain the adsorptive mechanisms and the consequential pollution caused by the absorption-desorption process. The studies on kinetics, isotherms, and thermodynamics revealed that the adsorption of BTs on PVC MPs was a multi-rate, heterogeneous multi-layer, and exothermic process, which was affected by external diffusion, intra-particle diffusion, and dynamic equilibrium. The factors including pH, salinity, and particle size also influenced the adsorption process. In the multi-solute system, competitive adsorption would occur between different BTs. The desorption of BTs from PVC MPs was positively associated with the increase of adsorption amount. Based on the results, the adsorption mechanisms of PVC MPs were clarified, involving hydrophobic interaction, electrostatic force, and non-covalent bonds. It was demonstrated that BTs in the water environment could most probably be accumulated and migrated through MPs, and eventually carried into organisms, posing an increased risk to the ecological environment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Adsorption , Benzothiazoles , Plastics/chemistry , Polyvinyl Chloride , Triazoles , Water , Water Pollutants, Chemical/analysis
20.
Phytomedicine ; 96: 153901, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026521

ABSTRACT

BACKGROUND: Cayratia albifolia C.L.Li (CAC) is a traditional Chinese herbal medicine used to treat inflammatory diseases. Our laboratory has firstly reported that the water extract from CAC relieved lipopolysaccharide (LPS)-induced inflammation, however stronger evidence is still needed to prove its anti-inflammatory effects and the mechanisms involved are also ambiguous. PURPOSE: This study sought to provide more evidence for the application of CAC in alleviating infectious inflammation and disclose novel pharmacological mechanisms. METHODS: Mice were injected with zymA into their paws or peritoneal cavities, and then treated with CAC. ELISA, immunofluorescence and flow cytometry were performed to detect the cytokines (IL-1ß, IL-6, TNF-α and IL-10) generation, the cell infiltration, and the CD86 or CD206 expression of macrophages. Then in vitro assays were performed on bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (PMs) to detect their expression of iNOS, arg-1 and the cytokines above. On mechanisms, western blotting (WB), electrophoretic mobility shift assay (EMSA) and flow cytometry were carried out to measure NF-κB transcriptional activity, mitochondrial bioactivity and the mTORC1 activation when BMDMs were stimulated by zymA and treated with CAC. Finally, the chemical components consisted in the extract were analyzed by LC-MS. RESULTS: 200 mg/kg CAC clearly inhibited zymA induced mouse paw edema and reduced the contents of IL-1ß, IL-6 and TNF-α rather than IL-10 in local tissues. CAC also reduced CD86 but not CD206 in macrophages in situ. Through in vitro experiments, it was discovered that CAC reduced the protein and mRNA levels of IL-1ß, IL-6 and TNF-α, and also inhibited iNOS expression, but showed no influence on IL-10 and arg-1 in macrophages. We found CAC reduced NF-κB transcriptional activity, down-regulated mitochondrial membrane potential and ROS levels, and inhibited mTORC1 activity. Finally, we identified 15 major compounds in the extract, among which 4-guanidinobutyric acid and kynurenic acid were the most abundant. CONCLUSION: This study provides further evidence that CAC significantly reduces zymA induced infectious inflammation. In addition, this novel data revealed that CAC restrained M1 rather than promoting M2 macrophages polarization via multi-target inhibitory effects, based on its potentially active components.


Subject(s)
Anti-Inflammatory Agents , Water , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines , Inflammation/drug therapy , Lipopolysaccharides , Macrophages , Mice , Zymosan/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...