Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 13: 893401, 2022.
Article in English | MEDLINE | ID: mdl-35812109

ABSTRACT

Background: Abdominal obesity and adipocytokines are closely related to atherosclerosis, and adiponectin level is considered one of the important clinical indicators. This study aimed to analyze the associations of abdominal visceral fat content and adiponectin level with intracranial atherosclerotic stenosis (ICAS). Methods: A total of 186 patients were enrolled in this study. Patients were distributed into ICAS and non-ICAS by the degree of artery stenosis. Plasma adiponectin levels and the ratio of visceral adipose tissue (VAT) to subcutaneous adipose tissue (SAT) were measured. The related factors of intracranial atherosclerotic stenosis were determined using multivariable logistic regression analysis. Results: The VAT/SAT ratio (OR, 26.08; 95% CI, 5.92-114.83; p < 0.001) and adiponectin (OR, 0.61; 95% CI, 0.44-0.84; p = 0.002) were found to be the independent predictors of ICAS in a multivariable logistic regression analysis. The prevalence of ICAS increased (T1: 27.4%; T2: 50.0%; T3: 75.8%) as the VAT/SAT ratio tertile increased (p < 0.001). The prevalence of ICAS decreased (T1: 72.6%; T2: 54.8%; T3: 25.8%) as the adiponectin tertile increased (p < 0.001). In ROC curves analysis, VAT/SAT ratio had a sensible accuracy for the prediction of ICAS. The optimal cut-off value of VAT/SAT ratio to predict ICAS in this study was 1.04 (AUC: 0.747; p < 0.001; sensitivity: 67.4%; specificity: 74.7%). The optimal adiponectin cutoff was 3.03 ug/ml (AUC: 0.716; p < 0.001; sensitivity:75.8%; specificity: 61.5%). Conclusion: Higher VAT/SAT ratio and lower plasma adiponectin levels were closely related to the increased risk of intracranial atherosclerotic stenosis.

2.
Aging (Albany NY) ; 11(10): 3094-3116, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31097679

ABSTRACT

Many infertile women suffered from poor ovarian response, and increased reactive oxygen species with age might mediate the poor ovarian response to FSH. In this study, we collected follicular fluids and isolated granulosa cells from female patients. Increased levels of peroxynitrite, tyrosine nitrations of FSH receptor (FSHR) and apoptosis were obviously detectable with decreased FSHR protein expressions in granulosa cells of the poor ovarian responders. In KGN (a human ovarian granulosa cell line) cells, exogenous peroxynitrite could sequester FSHR in the cytoplasm, and these dislocated FSHR might suffer from proteasome-mediated degradations. Here, we identified four peroxynitrite-mediated nitrated tyrosine residues of FSHR. Site-directed mutagenesis of FSHR revealed that Y626 was pivotal for intracellular trafficking of FSHR to the cell surface. Akt-induced inactivation of FoxO3a was required for the repression of FSH on granulosa cell apoptosis. However, peroxynitrite impaired FSH-induced Akt-FoxO3a signaling, while FSHR-Y626A mutant took similar effects. In addition, FoxO3a knockdown indeed impaired FSH-mediated cell survival, while FoxO3a-S253A mutant reversed that significantly.


Subject(s)
Granulosa Cells/metabolism , Oxidative Stress , Receptors, FSH/metabolism , Adult , Cell Line , Female , Follicle Stimulating Hormone , Forkhead Box Protein O3/metabolism , Humans , Mutagenesis, Site-Directed , Peroxynitrous Acid , Proto-Oncogene Proteins c-akt/metabolism , Receptors, FSH/genetics , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...