Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nat Commun ; 15(1): 3884, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719909

ABSTRACT

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Subject(s)
B7-1 Antigen , B7-H1 Antigen , Extracellular Vesicles , Programmed Cell Death 1 Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Mice , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance , Mice, Inbred C57BL , Male , Tumor Microenvironment/immunology
2.
Nat Commun ; 13(1): 4822, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35973990

ABSTRACT

Sensing of cytosolic DNA of microbial or cellular/mitochondrial origin by cGAS initiates innate immune responses via the adaptor protein STING. It remains unresolved how the activity of STING is balanced between a productive innate immune response and induction of autoimmunity. Here we show that interferon regulatory factor 8 (IRF8) is essential for efficient activation of STING-mediated innate immune responses in monocytes. This function of IRF8 is independent of its transcriptional role in monocyte differentiation. In uninfected cells, IRF8 remains inactive via sequestration of its IRF-associated domain by its N- and C-terminal tails, which reduces its association with STING. Upon triggering the DNA sensing pathway, IRF8 is phosphorylated at Serine 151 to allow its association with STING via the IRF-associated domain. This is essential for STING polymerization and TBK1-mediated STING and IRF3 phosphorylation. Consistently, IRF8-deficiency impairs host defense against the DNA virus HSV-1, and blocks DNA damage-induced cellular senescence. Bone marrow-derived mononuclear cells which have an autoimmune phenotype due to deficiency of Trex1, respond to IRF-8 deletion with reduced pro-inflammatory cytokine production. Peripheral blood mononuclear cells from systemic lupus erythematosus patients are characterized by elevated phosphorylation of IRF8 at the same Serine residue we find to be important in STING activation, and in these cells STING is hyper-active. Taken together, the transcription-independent function of IRF8 we describe here appears to mediate STING activation and represents an important regulatory step in the cGAS/STING innate immune pathway in monocytes.


Subject(s)
Leukocytes, Mononuclear , Monocytes , DNA , Immunity, Innate/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Leukocytes, Mononuclear/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Monocytes/metabolism , Nucleotidyltransferases/metabolism , Serine
3.
Adv Healthc Mater ; 10(10): e2002207, 2021 05.
Article in English | MEDLINE | ID: mdl-33645010

ABSTRACT

Owing to their ability to rapidly proliferate in specific niches and their amenability to genetic manipulation, bacteria are frequently studied as potential diagnostic or therapeutic bioagents in a range of pathological contexts. A sustained oxygen supply within solid tumors is essential in order to achieve positive radiotherapy (RT) outcomes, as these intratumoral oxygen levels are necessary to facilitate RT-induced reactive oxygen species (ROS) generation. In this study, a genetically engineered variant of the tumor-targeting probiotic E. coli Nissle 1917 bacteria that secret catalase is utilized to alleviate intratumoral hypoxia and to thereby enhance tumor radiosensitivity. These engineered bacteria are able to facilitate robust O2 evolution and consequent ROS generation in response to X-ray irradiation both in vitro and in vivo, significantly inhibiting tumor growth. Overall, the study highlights a novel and practical approach to enhance the efficacy of tumor RT, underscoring the value of future research in the field of probiotic medicine.


Subject(s)
Escherichia coli , Probiotics , Cell Line, Tumor , Humans , Hypoxia , Oxygen , Probiotics/therapeutic use
4.
ACS Appl Mater Interfaces ; 13(11): 12950-12959, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33703892

ABSTRACT

Cryopreservation is a key step for current translational medicine including reproductive medicine, regenerative medicine, and cell therapy. However, it is challenging to preserve rare cells for practical applications due to the difficulty in handling low numbers of cells as well as the lack of highly efficient and biocompatible preservation protocols. Here, we developed an acoustic droplet vitrification method for high-efficiency handling and preservation of rare cells. By employing an acoustic droplet ejection device, we can encapsulate rare cells into water-in-air droplets with a volume from ∼pL to ∼nL and deposit these cell-containing droplets into a droplet array onto a substrate. By incorporating a cooling system into the droplet array substrate, we can vitrify hundreds to thousands of rare cells at an ultrafast speed (about ∼2 s) based on the high surface to volume ratio of the droplets. By optimizing this method with three different cell lines (a human lung cancer cell line, A549 cells, a human liver cell line, L02 cells, and a mouse embryonic fibroblast cell line, 3T3-L1 cells), we developed an effective protocol with excellent cell viability (e.g., >85% for days, >70% for months), proliferation, and adhesion. As a proof-of-concept application, we demonstrated that our method can rapidly handle and efficiently preserve rare cells, highlighting its broad applications in species diversity, basic research, and clinical medicine.


Subject(s)
Cryopreservation/instrumentation , Vitrification , 3T3-L1 Cells , Animals , Cell Adhesion , Cell Line, Tumor , Cell Proliferation , Cells, Immobilized/cytology , Equipment Design , Humans , Lab-On-A-Chip Devices , Mice , Sound
5.
Nanoscale ; 13(8): 4512-4518, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33615325

ABSTRACT

In combating cancer, ultrasound (US)-triggered sonodynamic therapy (SDT) manifests a wide range of promising applications as a noninvasive treatment modality, thus showing potential to overcome the shortcomings and disadvantages of conventional photodynamic therapy (PDT). Reactive oxygen species (ROS)-based therapy is practically destroyed by the high concentration of glutathione (GSH) inside tumors, and depleting GSH to improve the outcome of SDT is indeed a great challenge. Herein, we designed GSH-depleting nanoplatelets for enhanced sonodynamic cancer therapy. A platelet membrane coated nanosystem (PSCI) has been designed and tested comprising mesoporous silica nanoparticles (MSNs) which have been loaded with cinnamaldehyde (CA) as an oxidative stress amplifier. The inner layer comprises the sonosensitizer IR780 and the oxidative stress amplifier CA, whereas the platelet membranes (PM) were designed and utilized as an outer layer that can target tumors, thereby enhancing the effectiveness of SDT by attenuating the capability of tumor cells for scavenging ROS with GSH. SDT and cinnamaldehyde amplify oxidative stress by acting synergistically, leading to the preferential destruction of cancer cells in vitro and in vivo. It is hoped that next-generation tumor SDT treatments will find their way with the help of this strategy.


Subject(s)
Nanoparticles , Neoplasms , Ultrasonic Therapy , Cell Line, Tumor , Glutathione , Neoplasms/drug therapy , Reactive Oxygen Species
7.
Mil Med Res ; 7(1): 41, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32887670

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, coronavirus disease 2019 (COVID-19), affecting more than seventeen million people around the world. Diagnosis and treatment guidelines for clinicians caring for patients are needed. In the early stage, we have issued "A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)"; now there are many direct evidences emerged and may change some of previous recommendations and it is ripe for develop an evidence-based guideline. We formed a working group of clinical experts and methodologists. The steering group members proposed 29 questions that are relevant to the management of COVID-19 covering the following areas: chemoprophylaxis, diagnosis, treatments, and discharge management. We searched the literature for direct evidence on the management of COVID-19, and assessed its certainty generated recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Recommendations were either strong or weak, or in the form of ungraded consensus-based statement. Finally, we issued 34 statements. Among them, 6 were strong recommendations for, 14 were weak recommendations for, 3 were weak recommendations against and 11 were ungraded consensus-based statement. They covered topics of chemoprophylaxis (including agents and Traditional Chinese Medicine (TCM) agents), diagnosis (including clinical manifestations, reverse transcription-polymerase chain reaction (RT-PCR), respiratory tract specimens, IgM and IgG antibody tests, chest computed tomography, chest x-ray, and CT features of asymptomatic infections), treatments (including lopinavir-ritonavir, umifenovir, favipiravir, interferon, remdesivir, combination of antiviral drugs, hydroxychloroquine/chloroquine, interleukin-6 inhibitors, interleukin-1 inhibitors, glucocorticoid, qingfei paidu decoction, lianhua qingwen granules/capsules, convalescent plasma, lung transplantation, invasive or noninvasive ventilation, and extracorporeal membrane oxygenation (ECMO)), and discharge management (including discharge criteria and management plan in patients whose RT-PCR retesting shows SARS-CoV-2 positive after discharge). We also created two figures of these recommendations for the implementation purpose. We hope these recommendations can help support healthcare workers caring for COVID-19 patients.


Subject(s)
Chemoprevention/methods , Clinical Laboratory Techniques/methods , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adult , Betacoronavirus , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Evidence-Based Medicine , Female , Humans , Male , Middle Aged , Pandemics/prevention & control , Patient Discharge/standards , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Practice Guidelines as Topic , SARS-CoV-2
8.
Mil. med. res. (Lond.) ; 7(41): 1-33, Sept. 04, 2020.
Article in English | BIGG - GRADE guidelines | ID: biblio-1129883

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, coronavirus disease 2019 (COVID-19), affecting more than seventeen million people around the world. Diagnosis and treatment guidelines for clinicians caring for patients are needed. In the early stage, we have issued "A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)"; now there are many direct evidences emerged and may change some of previous recommendations and it is ripe for develop an evidence-based guideline. We formed a working group of clinical experts and methodologists. The steering group members proposed 29 questions that are relevant to the management of COVID-19 covering the following areas: chemoprophylaxis, diagnosis, treatments, and discharge management. We searched the literature for direct evidence on the management of COVID-19, and assessed its certainty generated recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Recommendations were either strong or weak, or in the form of ungraded consensus-based statement. Finally, we issued 34 statements. Among them, 6 were strong recommendations for, 14 were weak recommendations for, 3 were weak recommendations against and 11 were ungraded consensus-based statement. They covered topics of chemoprophylaxis (including agents and Traditional Chinese Medicine (TCM) agents), diagnosis (including clinical manifestations, reverse transcription-polymerase chain reaction (RT-PCR), respiratory tract specimens, IgM and IgG antibody tests, chest computed tomography, chest x-ray, and CT features of asymptomatic infections), treatments (including lopinavir-ritonavir, umifenovir, favipiravir, interferon, remdesivir, combination of antiviral drugs, hydroxychloroquine/chloroquine, interleukin-6 inhibitors, interleukin-1 inhibitors, glucocorticoid, qingfei paidu decoction, lianhua qingwen granules/capsules, convalescent plasma, lung transplantation, invasive or noninvasive ventilation, and extracorporeal membrane oxygenation (ECMO)), and discharge management (including discharge criteria and management plan in patients whose RT-PCR retesting shows SARS-CoV-2 positive after discharge). We also created two figures of these recommendations for the implementation purpose. We hope these recommendations can help support healthcare workers caring for COVID19 patients


Subject(s)
Humans , Adult , Plasma/immunology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Chloroquine/therapeutic use , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Chemoprevention/methods , Receptors, Interleukin-6/therapeutic use , Anti-Retroviral Agents/therapeutic use , Pandemics/prevention & control , Lopinavir/therapeutic use , Betacoronavirus/drug effects , Hydroxychloroquine/therapeutic use , Evidence-Based Practice/methods
9.
Eur J Immunol ; 50(9): 1350-1361, 2020 09.
Article in English | MEDLINE | ID: mdl-32339264

ABSTRACT

Chronic HCV infection can lead to cirrhosis and is associated with increased mortality. Interleukin (IL)-10-producing B cells (B10 cells) are regulatory cells that suppress cellular immune responses. Here, we aimed to determine whether HCV induces B10 cells and assess the roles of the B10 cells during HCV infection. HCV-induced B10 cells were enriched in CD19hi and CD1dhi CD5+ cell populations. HCV predominantly triggered the TLR2-MyD88-NF-κB and AP-1 signaling pathways to drive IL-10 production by B cells. In a humanized murine model of persistent HCV infection, to neutralize IL-10 produced by B10 cells, mice were treated with pcCD19scFv-IL-10R, which contains the genes coding the anti-CD19 single-chain variable fragment (CD19scFv) and the extracellular domain of IL-10 receptor alpha chain (sIL-10Ra). This treatment resulted in significant reduction of B10 cells in spleen and liver, increase of cytotoxic CD8+ T-cell responses against HCV, and low viral loads in infected humanized mice. Our results indicate that targeting B10 cells via neutralization of IL-10 may offer a novel strategy to enhance anti-HCV immunotherapy.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Hepatitis C, Chronic/immunology , Interleukin-10/antagonists & inhibitors , Interleukin-10/immunology , Animals , Hepacivirus/immunology , Humans , Mice
10.
ACS Nano ; 14(4): 3747-3754, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32267678

ABSTRACT

The COVID-19 pandemic is one of those global challenges that transcends territorial, political, ideological, religious, cultural, and certainly academic boundaries. Public health and healthcare workers are at the frontline, working to contain and to mitigate the spread of this disease. Although intervening biological and immunological responses against viral infection may seem far from the physical sciences and engineering that typically work with inanimate objects, there actually is much that can-and should-be done to help in this global crisis. In this Perspective, we convert the basics of infectious respiratory diseases and viruses into physical sciences and engineering intuitions, and through this exercise, we present examples of questions, hypotheses, and research needs identified based on clinicians' experiences. We hope researchers in the physical sciences and engineering will proactively study these challenges, develop new hypotheses, define new research areas, and work with biological researchers, healthcare, and public health professionals to create user-centered solutions and to inform the general public, so that we can better address the many challenges associated with the transmission and spread of infectious respiratory diseases.


Subject(s)
Coronavirus Infections , Engineering , Nanotechnology , Natural Science Disciplines , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Delivery of Health Care , Humans , Nanotechnology/trends , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Public Health , Publishing , SARS-CoV-2
11.
Nanoscale ; 11(25): 12388-12396, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31215952

ABSTRACT

The precise diagnosis of cancer remains a great challenge; therefore, it is our research interest to develop safe, tumor-specific reagents. In this study, we designed nanovesicles derived from erythrocyte membranes; the nanovesicles are capable of recognizing tumor cells for both circulating tumor cell (CTC) capture and tumor imaging. The tumor-targeting molecules folic acid (FA) and fluorescein Cy5 were modified on the nanovesicle surface. The developed nanovesicles exhibit excellent tumor targeting ability both in vitro and in vivo for CTC capture and in tumor imaging. Compared with traditional immunomagnetic beads, the proposed nanovesicles are capable of avoiding non-specific adsorption as a derivative of red blood cells. Combined with a non-invasive means of micromanipulation, the nanometer-sized vesicles show a high purity of CTC capture (over 90%). In vivo, the nanovesicles can also be employed for efficient tumor imaging without obvious toxicity and side effects. In brief, the nanovesicles prepared herein show potential clinical application for integrated diagnosis in vitro and in vivo.


Subject(s)
Carbocyanines , Erythrocytes , Neoplasms, Experimental , Neoplastic Cells, Circulating/metabolism , Optical Imaging , Animals , Carbocyanines/chemistry , Carbocyanines/pharmacology , Erythrocytes/chemistry , Erythrocytes/metabolism , Female , HCT116 Cells , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism
12.
Technol Cancer Res Treat ; 18: 1533033819846632, 2019 01 01.
Article in English | MEDLINE | ID: mdl-31106685

ABSTRACT

α-Fetoprotein is commonly used in the diagnosis of hepatocellular carcinoma. However, the diagnostic significance of α-fetoprotein has been questioned because a number of patients with hepatocellular carcinoma are α-fetoprotein negative. It is therefore necessary to develop novel noninvasive techniques for the early diagnosis of hepatocellular carcinoma, particularly when α-fetoprotein level is low or negative. The current study aimed to evaluate the diagnostic efficiency of hematological parameters to determine which can act as surrogate markers in α-fetoprotein-negative hepatocellular carcinoma. Therefore, a retrospective study was conducted on a training set recruited from Zhongnan Hospital of Wuhan University-including 171 α-fetoprotein-negative patients with hepatocellular carcinoma and 102 healthy individuals. The results show that mean values of mean platelet volume, red blood cell distribution width, mean platelet volume-PC ratio, neutrophils-lymphocytes ratio, and platelet count-lymphocytes ratio were significantly higher in patients with hepatocellular carcinoma in comparison to the healthy individuals. Most of these parameters showed moderate area under the curve in α-fetoprotein-negative patients with hepatocellular carcinoma, but their sensitivities or specificities were not satisfactory enough. So, we built a logistic regression model combining multiple hematological parameters. This model presented better diagnostic efficiency with area under the curve of 0.922, sensitivity of 83.0%, and specificity of 93.1%. In addition, the 4 validation sets from different hospitals were used to validate the model. They all showed good area under the curve with satisfactory sensitivities or specificities. These data indicate that the logistic regression model combining multiple hematological parameters has better diagnostic efficiency, and they might be helpful for the early diagnosis for α-fetoprotein-negative hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnosis , Logistic Models , Algorithms , Biomarkers, Tumor , Carcinoma, Hepatocellular/metabolism , Female , Humans , Liver Neoplasms/metabolism , Male , Neoplasm Staging , Prognosis , ROC Curve , Reproducibility of Results , Retrospective Studies , Workflow , alpha-Fetoproteins/metabolism
13.
Anal Cell Pathol (Amst) ; 2019: 9740475, 2019.
Article in English | MEDLINE | ID: mdl-31934534

ABSTRACT

Colorectal cancer (CRC) is one of the most frequent cancers occurring in developed countries. Distant CRC metastasis causes more than 90% of CRC-associated mortality. MicroRNAs (miRNAs) play a key role in regulating tumor metastasis and could be potential diagnostic biomarkers in CRC patients. This study is aimed at identifying miRNAs that can be used as diagnostic biomarkers for CRC metastasis. Towards this goal, we compared the expression of five miRNAs commonly associated with metastasis (i.e., miR-10b, miR-200c, miR-155, miR-21, and miR-31) between primary CRC (pCRC) tissues and corresponding metastatic lymph nodes (mCRC). Further, bioinformatics analysis of miR-31 was performed to predict target genes and related signaling pathways. Results showed that miR-31, miR-21, miR-10b, and miR-155 expression was increased to different extents, while miR-200c expression was lower in mCRC than that in pCRC. Moreover, we found that the level of both miR-31 and miR-21 was notably increased in pCRC when lymph node metastasis (LNM) was present, and the increase of miR-31 expression was more profound. Hence, upregulated miR-31 and miR-21 expression might be a miRNA signature in CRC metastasis. Moreover, we detected a higher miR-31 level in the plasma of CRC patients with LNM compared to patients without LNM or healthy individuals. With the bioinformatics analysis of miR-31, 121 putative target genes and transition of mitotic cell cycle and Wnt signaling pathway were identified to possibly play a role in CRC progression. We next identified seven hub genes via module analysis; of these, TNS1 was most likely to be the target of miR-31 and had significant prognostic value for CRC patients. In conclusion, miR-31 is significantly increased in the cancer tissues and plasma of CRC patients with LNM; thus, a high level of miR-31 in the plasma is a potential biomarker for the diagnosis of LNM of CRC.


Subject(s)
Biomarkers, Tumor/metabolism , Colorectal Neoplasms/metabolism , Lymphatic Metastasis/diagnosis , MicroRNAs/blood , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Computational Biology , Gene Expression Regulation, Neoplastic/genetics , Gene Ontology , Humans , Kaplan-Meier Estimate , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Multigene Family , Neoplasm Staging , Prognosis , Protein Interaction Maps , Up-Regulation , Wnt Signaling Pathway/genetics
14.
Front Oncol ; 8: 569, 2018.
Article in English | MEDLINE | ID: mdl-30560088

ABSTRACT

Objective: To investigate the potential biomarkers for venous metastasis of hepatocellular carcinoma (HCC), and briefly discuss their target genes and the signaling pathways they are involved in. Materials and Method: The dataset GSE6857 was downloaded from GEO. Significantly differentially expressed miRNAs were identified using the R package "limma," After that, the survival analysis was conducted to discover the significance of these up-regulated miRNAs for the prognosis of HCC patients. Additionally, miRNAs which were up-regulated in venous metastasis positive HCC tissues and were significant for the prognosis of HCC patients were further verified in clinical samples using RT-qPCR. The miRNAs were then analyzed for their correlations with clinical characteristics including survival time, AFP level, pathological grade, TNM stage, tumor stage, lymph-node metastasis, distant metastasis, child-pugh score, vascular invasion, liver fibrosis and race using 375 HCC samples downloaded from the TCGA database. The target genes of these miRNAs were obtained using a miRNA target gene prediction database, and their functions were analyzed using the online tool DAVID. Results: 15 miRNAs were differentially expressed in samples with venous metastasis, among which 7 were up-regulated in venous metastasis positive HCC samples. As one of the up-regulated miRNAs, hsa-miR-210 was identified as an independent prognostic factor for HCC. Using RT-qPCR, it was evident that hsa-miR-210 expression was significantly higher in venous metastasis positive HCC samples (p = 0.0036). Further analysis indicated that hsa-miR-210 was positively associated with AFP level, pathological grade, TNM stage, tumor stage and vascular invasion. A total of 168 hsa-miR-210 target genes, which are mainly related to tumor metastasis and tumor signaling pathways, were also predicted in this study. Conclusion: hsa-miR-210 might promote vascular invasion of HCC cells and could be used as a prognostic biomarker.

15.
J Cancer ; 9(19): 3435-3446, 2018.
Article in English | MEDLINE | ID: mdl-30310500

ABSTRACT

Background: miRNAs dysregulate in hepatocellular carcinoma (HCC), showing promise for diagnostic biomarkers which may be found through exploration of differentially expressed miRNAs when comparing HCC and normal liver tissues. Materials and Methods: In the present research, candidate miRNAs were selected and verified using screening dataset GSE12717 and training dataset GSE10694, respectively. A miRNA combination was constructed using stepwise logistic regression analysis and validated using two datasets GSE74618 and TCGA. Target genes of miRNAs in the combination were obtained using a miRNA target gene prediction database. Functional analysis was conducted using an online tool DAVID. We also analyzed the mRNA-Seq data of project LIHC from TCGA to identify the hub target genes of the miRNAs. Results: A miRNA combination, which is composed of hsa-miR-221 and hsa-miR-29c was defined in this study. The miRNA combination is more effective in discriminating HCC patients from normal individuals than individual miRNAs. Additionally, the combined miRNAs showed a lower misdiagnosis rate than AFP in HCC diagnosis. In terms of the functional analysis, a total of 27 target genes of hsa-miR-221 and 96 target genes of hsa-miR-29c were obtained. Among which, INSIG1 was the common target of the two miRNAs. It was also found that both previously mentioned miRNAs played important roles in the regulation of transcription, cell proliferation, and involvement in cancer-related pathways. Lastly, 2 hub target genes of hsa-miR-221 and 16 hub target genes of hsa-miR-29c were obtained. Conclusion: We established a miRNA combination as a promising tool for HCC diagnosis, and the target genes we predicted provide possible points of penetration for researching these two miRNAs in HCC.

16.
Onco Targets Ther ; 11: 5917-5924, 2018.
Article in English | MEDLINE | ID: mdl-30271176

ABSTRACT

PURPOSE: This study aimed to explore serum lipoprotein (a) (Lp(a)) levels and investigate their prognostic value in hepatocellular carcinoma (HCC) patients after curative resection. MATERIALS AND METHODS: One cohort of 102 healthy individuals, one cohort of 172 HCC patients, and one cohort of 171 HCC patients undergoing curative resection were studied to evaluate serum Lp(a) levels and their prognostic significance, using Kaplan-Meier curves and log-rank tests. RESULTS: The Lp(a) levels in HCC patients were significantly lower than those in healthy individuals. Furthermore, the levels in HCC patients were significantly associated with recurrence. HCC patients were stratified into high Lp(a) (>20 mg/L) and low Lp(a) (≤20 mg/L) groups, using an optimal cutoff point for the Lp(a) of 20 mg/L. Low Lp(a) levels significantly correlated with tumor recurrence and survival time; HCC patients with low Lp(a) levels had higher recurrence rates and shorter survival time than those with high Lp(a) levels; Lp(a) was an independent prognostic factor for relapse-free survival and overall survival, and retained its prognostic value for α-fetoprotein ≤400 ng/mL and tumor size ≤5 cm subgroups in the training and validation cohorts. CONCLUSION: Lp(a) was a promising and useful marker for assessing and monitoring recurrence and prognosis of patients with HCC, and improving Lp(a) levels may be a promising therapeutic strategy in HCC patients.

17.
Clin Chim Acta ; 485: 33-41, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29883634

ABSTRACT

BACKGROUND: Accumulating evidence has indicated that microRNAs play important roles in the initiation and progression of digestive system tumors. However, previous studies suggest that the accuracy of miRNA detection in digestive system tumors was inconsistent. METHODS: The candidate miRNAs were obtained from The Cancer Genome Atlas (TCGA). Meta-analysis was performed to evaluate the diagnostic value of these miRNAs in digestive system tumors. Furthermore, the potential target genes of the miRNAs were predicted and assessed with functional analysis. RESULTS: According to TCGA data, miR-139 was a common biomarker of digestive system tumors. It was markedly reduced in tumor tissues as compared with non-cancerous tissues in digestive system tumors. In the meta-analysis, the pooled diagnostic odds ratio (DOR) and AUC was 57.51 (95% CI: 14.25-232.04) and 0.96 (95% CI: 0.94-0.97), respectively. Furthermore, the overall sensitivity and specificity was 0.89 (95% CI: 0.73-0.96) and 0.91 (95% CI: 0.75-0.97), respectively. The diagnostic value of tissue miR-139 was higher than the diagnostic value of blood miR-139. In particular, miR-139 was a superior marker for distinguishing colorectal cancer. CONCLUSION: miR-139 could be a potential biomarker for diagnosis of digestive system tumors especially colorectal cancer.


Subject(s)
Biomarkers, Tumor/blood , Computational Biology , Digestive System Neoplasms/blood , Digestive System Neoplasms/diagnosis , MicroRNAs/blood , Humans , Odds Ratio , Sensitivity and Specificity
18.
Cancer Manag Res ; 10: 1449-1459, 2018.
Article in English | MEDLINE | ID: mdl-29922089

ABSTRACT

BACKGROUND: Tissue biopsy-based cancer diagnosis has limitations because of the fact that tumor tissues are in constant evolution and extremely heterogeneous. The current study was aimed to examine whether tumor-educated blood platelets (TEPs) might be a potential all-in-one source for blood-based cancer diagnostics to overcome the limitations of conventional cancer biopsy. METHODS: In the present study, we evaluated the expression pattern of MAGI2 antisense RNA 3 (MAGI2-AS3) and ZNFX1 antisense RNA 1 (ZFAS1) in both plasma and platelets of 101 non-small-cell lung cancer (NSCLC) patients. Receiver operating characteristic (ROC) curve was generated to evaluate their diagnostic potential. In addition, epidermal growth factor receptor (EGFR) mutations were detected in DNA and RNA samples of platelets for companion diagnostics. RESULTS: Our results showed that the levels of MAGI2-AS3 and ZFAS1 in both plasma and platelets of NSCLC patients were significantly downregulated than those in healthy controls. A positive correlation of long noncoding RNA expression was observed between platelets and plasma (r=0.738 for MAGI2-AS3, r=0.751 for ZFAS1, respectively). By ROC analysis, we found that molecular interrogation of MAGI2-AS3 and ZFAS1 in TEPs and plasma can offer valuable diagnostic performance for NSCLC patients (area under the ROC curve [AUC] MAGI2-AS3 = 0.853/0.892, and AUC ZFAS1 =0.780/0.744 for diagnosing adenocarcinoma and squamous cell carcinoma cases from controls, respectively). Clinicopathologic characteristic analysis further revealed that MAGI2-AS3 level significantly correlated with tumor-node-metastasis (TNM) stage (p=0.001 in TEPs, p=0.003 in plasma), lymph-node metastasis (p=0.016 in TEPs, p=0.023 in plasma), and distant metastasis (p=0.045 in TEPs, p=0.045 in plasma), while ZFAS1 level was only correlated with TNM stage (p=0.005 in TEPs, p=0.044 in plasma). Furthermore, EGFRvIII RNA existed in both TEPs and plasma, but EGFR intracellular mutations cannot be detected in DNA of TEPs isolated from NSCLC. CONCLUSION: Our data suggested that TEP is a promising source for NSCLC diagnosis and companion diagnostics.

19.
Cell Physiol Biochem ; 46(2): 532-545, 2018.
Article in English | MEDLINE | ID: mdl-29614511

ABSTRACT

BACKGROUND/AIMS: Exosomal circulating long non-coding RNAs (lncRNAs) in blood are emerging as clinically useful and non-invasive biomarkers for tumor diagnosis. However, normal cells can also secrete exosomes, so it is a prerequisite to obtain tumor-derived exosomes for better understanding of their diagnostic impacts in cancer. In this study, a dual-antibody-functionalized immunoaffinity system was established to isolate exosomes and investigate their lncRNAs expression pattern and clinical significance in prostate cancer (PCa). METHODS: A commercially available kit was used to isolate total exosomes, which were then purified by a dual-antibody-functionalized immunoaffinity system. RT-qPCR was performed to detect the expression of exosomal lncRNAs. Receiver operating characteristic (ROC) curves were plotted to assess the diagnostic value. RESULTS: Expression levels of two lncRNAs in tumor-derived exosomes were significantly higher than those in total exosomes. The levels of SAP30L-AS1 were upregulated in benign prostatic hyperplasia (BPH), and SChLAP1 levels were significantly higher in PCa than in BPH and healthy individuals. The area under the ROC curve indicated that SAP30L-AS1 and SChLAP1 had adequate diagnostic value to distinguish PCa from controls. Two lncRNAs separately combined with prostate specific antigen (PSA) possessed a moderate ability for discrimination. SAP30L-AS1 expression level was related to PSA values and tumor invasion. SChLAP1 expression was significantly higher in patients with higher Gleason scores, and was also effective in differentiating between BPH and PCa when the concentration of PSA was in the gray zone. CONCLUSION: The isolation of tumor-derived exosomes by dual-antibody-functionalized immunoaffinity systems and detection of their lncRNAs in plasma may lead to the identification of suitable biomarkers, with potential diagnostic utility.


Subject(s)
Biomarkers, Tumor/metabolism , Exosomes/genetics , Prostatic Neoplasms/diagnosis , RNA, Long Noncoding/metabolism , Aged , Antigens, Surface/metabolism , Area Under Curve , Biomarkers, Tumor/genetics , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Dynamic Light Scattering , Endosomal Sorting Complexes Required for Transport/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Exosomes/metabolism , Glutamate Carboxypeptidase II/metabolism , Humans , Male , Microscopy, Electron, Transmission , Neoplasm Grading , Prostate-Specific Antigen/blood , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , ROC Curve , Tetraspanin 30/metabolism , Transcription Factors/metabolism , Up-Regulation
20.
Theranostics ; 8(6): 1624-1635, 2018.
Article in English | MEDLINE | ID: mdl-29556345

ABSTRACT

Background: Circulating tumor cells (CTCs) are a burgeoning topic in cancer biomarker discovery research with minimal invasive blood draws. CTCs can be used as potential biomarkers for disease prognosis, early cancer diagnosis and pharmacodynamics. However, the extremely low abundance of CTCs limits their clinical utility because of technical challenges such as the isolation and subsequent detailed molecular and functional characterization of rare CTCs from patient blood samples. Methods: In this study, we present a novel density gradient centrifugation method employing biodegradable gelatin nanoparticles coated on silicon beads for the isolation, release, and downstream analysis of CTCs from colorectal and breast cancer patients. Results: Using clinical patient/spiked samples, we demonstrate that this method has significant CTC-capture efficiency (>80%) and purity (>85%), high CTC release efficiency (94%) and viability (92.5%). We also demonstrate the unparalleled robustness of our method in downstream CTC analyses such as the detection of PIK3CA mutations. Conclusion: The efficiency and versatility of the multifunctional density microbeads approach provides new opportunities for personalized cancer diagnostics and treatments.


Subject(s)
Breast Neoplasms/diagnosis , Cell Separation/methods , Colorectal Neoplasms/diagnosis , Gelatin/chemistry , Nanoparticles/chemistry , Neoplastic Cells, Circulating/metabolism , Antibodies, Monoclonal/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CD146 Antigen/genetics , CD146 Antigen/metabolism , Cell Line, Tumor , Cell Separation/instrumentation , Centrifugation, Density Gradient/methods , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Early Detection of Cancer , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Female , Gene Expression , Humans , Mutation , Neoplastic Cells, Circulating/pathology , Precision Medicine , Prognosis , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...