Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38669566

ABSTRACT

The negative effect of photoinduced halide segregation (PIHS) on the properties of hybrid halide perovskites poses a major obstacle for its future commercial application. Therefore, the in-depth understanding of halide-ion segregation and its causes is an urgent and intractable problem. When PIHS reaches a certain threshold, it will aggravate the deterioration of the film surface morphology and form nanoscale cracks. Herein, the formation mechanism and types of cracks are revealed by exploring the stress distribution in the film. Using the femtosecond time-resolved transient absorption spectroscopy, the ultrafast formation of the iodine rich phase is observed, which appears earlier than the bromine rich phase. In addition, the introduction of organic ligand didodecyldimethylammonium bromide can significantly inhibit PIHS and improve the surface morphology of the film, which can promote the device efficiency from 9.63 to 11.20%. This work provides a novel perspective for the exploration of the PIHS.

2.
HLA ; 103(1): e15329, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38174646

ABSTRACT

HLA-C*17:69 differs from HLA-C*17:01:01:02 by one nucleotide in exon 4.


Subject(s)
HLA-C Antigens , Nucleotides , Humans , HLA-C Antigens/genetics , Alleles , Base Sequence , China , Sequence Analysis, DNA
3.
Plant Physiol ; 194(4): 2679-2696, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38146904

ABSTRACT

Drought is a major adverse environmental factor that plants face in nature but the molecular mechanism by which plants transduce stress signals and further endow themselves with tolerance remains unclear. Malectin/malectin-like domains containing receptor-like kinases (MRLKs) have been proposed to act as receptors in multiple biological signaling pathways, but limited studies show their roles in drought-stress signaling and tolerance. In this study, we demonstrate OsMRLK63 in rice (Oryza sativa L.) functions in drought tolerance by acting as the receptor of 2 rapid alkalization factors, OsRALF45 and OsRALF46. We show OsMRLK63 is a typical receptor-like kinase that positively regulates drought tolerance and reactive oxygen species (ROS) production. OsMRLK63 interacts with and phosphorylates several nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with the primarily phosphorylated site at Ser26 in the N-terminal of RESPIRATORY BURST OXIDASE HOMOLOGUE A (OsRbohA). The application of the 2 small signal peptides (OsRALF45/46) on rice can greatly alleviate the dehydration of plants induced by mimic drought. This function depends on the existence of OsMRLK63 and the NADPH oxidase-dependent ROS production. The 2 RALFs interact with OsMRLK63 by binding to its extracellular domain, suggesting they may act as drought/dehydration signal sensors for the OsMRLK63-mediated process. Our study reveals a OsRALF45/46-OsMRLK63-OsRbohs module which contributes to drought-stress signaling and tolerance in rice.


Subject(s)
Oryza , Reactive Oxygen Species/metabolism , Oryza/metabolism , Drought Resistance , Dehydration , Stress, Physiological , Plants, Genetically Modified/metabolism , Droughts , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
4.
Acta Biomater ; 171: 202-208, 2023 11.
Article in English | MEDLINE | ID: mdl-37690593

ABSTRACT

The inherent membrane tension of biological materials could vitally affect their responses to contact loading but is generally ignored in existing indentation analysis. In this paper, the authors theoretically investigate the contact stiffness of axisymmetric indentations of elastic solids covered with thin tensed membranes. When the indentation size decreases to the same order as the ratio of membrane tension to elastic modulus, the contact stiffness accounting for the effect of membrane tension becomes much higher than the prediction of conventional contact theory. An explicit expression is derived for the contact stiffness, which is universal for axisymmetric indentations using indenters of arbitrary convex profiles. On this basis, a simple method of analysis is proposed to estimate the membrane tension and elastic modulus of biological materials from the indentation load-depth data, which is successfully applied to analyze the indentation experiments of cells and lungs. This study might be helpful for the comprehensive assessment of the mechanical properties of soft biological systems. STATEMENT OF SIGNIFICANCE: This paper highlights the crucial effect of the inherent membrane tension on the indentation response of soft biomaterials, which has been generally ignored in existing analysis of experiments. For typical indentation tests on cells and organs, the contact stiffness can be twice or higher than the prediction of conventional contact model. A universal expression of the contact stiffness accounting for the membrane tension effect is derived. On this basis, a simple method of analysis is proposed to abstract the membrane tension of biomaterials from the experimentally recorded indentation load-depth data. With this method, the elasticity of soft biomaterials can be characterized more comprehensively.


Subject(s)
Biocompatible Materials , Elasticity , Elastic Modulus
5.
Math Biosci Eng ; 20(7): 12682-12699, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37501461

ABSTRACT

The bill of materials (BOM) runs through all stages of the life cycle of manufacturing products, which is the core of manufacturing enterprises. With increasing complexity of modern manufacturing engineering and widespread using of intelligent manufacturing technology, the BOM data keeps rising and transformation process is increasingly frequent and complicated. In order to improve efficiency of BOM management and ensure the diversity, accuracy and consistency of BOM in the product development, the BOM multi-view integrated management and mapping method for complex products were researched. First, a complex product BOM integrated management framework and the evolution model based on multiple views were established which described the BOM integrated management mechanism and transformation relationship among different BOMs. Subsequently, process of BOM transformation was analyzed, and a BOM transformation model was proposed. Moreover, a rule-based BOM multi-view mapping algorithm was proposed. With the rule definition and mathematical modelling for key components, the complex mapping principle was elaborated. Finally, the BOM multi-view transformation cases and the prototype system were illustrated and discussed, which verified the feasibility and versatility of model and method.

7.
J Phys Condens Matter ; 34(38)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35839749

ABSTRACT

Molecular dynamics simulations are performed to study the mechanical properties and deformation mechanisms of a heterogeneous face-centered cubic/ body-centered cubic Cu/Ta nanolayered composite under uniaxial tension and compression. The results show that the stress-strain curves exhibit two main yield points in tension while only one yield point during compression, and the deformation primarily experiences three stages. The first stage is linearly elastic at small strains, followed by the nucleation and propagation of dislocations and stacking faults in the Cu layers, and eventually the Ta layers yield to plastic deformation. The yield of the specimen is mainly determined by the dislocation evolution in the hard phase (i.e. Ta layers), which leads to a sharp drop in the stress-strain curve. We show that the heterogeneous nanolayered composite exhibits a good deformation compatibility during compression but an obvious deformation incompatibility between Cu and Ta layers in tension. The temperature effect is also systematically investigated. It is revealed that the yield of the specimen at higher temperature depends only on the dislocation evolution in the thick Ta layers, and the yield strengths in tension and compression both decrease with the increasing temperature. In particular, our computations show that high temperature can significantly suppress the dislocation activities in the Cu layers during deformation, which results in a lower dislocation density of the Cu layers compared with that of the Ta layers and thus causing an incompatible fashion among the constituent layers.

9.
Rice (N Y) ; 14(1): 100, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34874506

ABSTRACT

Carbohydrate-binding malectin/malectin-like domain-containing proteins (CBMs) are a recently identified protein subfamily of lectins that participates various functional bioprocesses in the animal, bacterial, and plant kingdoms. However, little is known the roles of CBMs in rice development and stress response. In this study, OsCBM1, which encodes a protein containing only one malectin-like domain, was cloned and characterized. OsCBM1 is localized in both the endoplasmic reticulum and plasma membrane. Its transcripts are dominantly expressed in leaves and could be significantly stimulated by a number of phytohormone applications and abiotic stress treatments. Overexpression of OsCBM1 increased drought tolerance and reactive oxygen species production in rice, whereas the knockdown of the gene decreased them. OsCBM1 physically interacts with OsRbohA, a NADPH oxidase, and the expression of OsCBM1 in osrbohA, an OsRbohA-knockout mutant, is significantly downregulated under both normal growth and drought stress conditions. Meanwhile, OsCBM1 can also physically interacts with OsRacGEF1, a specific guanine nucleotide exchange factor for the Rop/Rac GTPase OsRac1, and transient coexpression of OsCBM1 with OaRacGEF1 significantly enhanced ROS production. Further transcriptome analysis showed that multiple signaling regulatory mechanisms are involved in the OsCBM1-mediated processes. All these results suggest that OsCBM1 participates in NADPH oxidase-mediated ROS production by interacting with OsRbohA and OsRacGEF1, contributing to drought stress tolerance of rice. Multiple signaling pathways are likely involved in the OsCBM1-mediated stress tolerance in rice.

10.
Micromachines (Basel) ; 12(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34832769

ABSTRACT

Micromachining techniques have been applied widely to many industrial sectors, including aerospace, automotive, and precision instruments. However, due to their high-precision machining requirements, and the knowledge-intensive characteristics of miniaturized parts, complex manufacturing process problems often hinder production. To solve these problems, a systematic scheme for structured micromachining process problem solving and an innovation support system is required. This paper presents a knowledge-based holistic framework that enables process planners to achieve micromachining innovation design. By analyzing innovation design procedures and available knowledge sources, an open multi-source Machining Process Innovation Knowledge (MPIK) acquisition paradigm is presented, including knowledge units and a knowledge network. Further, a MPIK network-driven structured process problem-solving and heuristic innovation design method was explored. Subsequently, a knowledge-driven heuristic design system for machining process innovation was integrated in the Computer-Aided Process Innovation (CAPI) platform. Finally, a case study involving specific process problem-solving and innovation scheme design for micro-turbine machining was studied to validate the proposed approach.

11.
Micromachines (Basel) ; 12(1)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33466997

ABSTRACT

Cavities are typical features in aeronautical structural parts and molds. For high-speed milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the mathematical model of cavity corner milling process, the geometric center of the corner is selected as the initial tool feed position. Subsequently, the tool path is globally optimized through ant colony dissemination and pheromone perception for path solution of multi-cavity milling. With the advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency of the global shortest processing path is effectively improved. Finally, the milling programming of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based methodology can shorten the milling time of a sample part by more than 13%.

12.
RSC Adv ; 11(5): 3115-3124, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-35424239

ABSTRACT

Atomic simulations are conducted to investigate the influence of hydrogenation on the mechanical properties of Pd nanoparticles. It is found that with an increase in the H atom content both the elastic modulus and the yield stress decrease approximately linearly. Moreover, the H atom content evidently alters the atomic deformation mechanisms in Pd nanoparticles. When the H atom content is in the range of 0-0.3, yield initiates from dislocation nucleating beneath surface steps and then a pyramid hillock is formed. Subsequently, dislocation nucleation and exhaustion at the surface will govern the plastic deformation. However, when the H atom content is in the range of 0.3-0.4, massive initial defects are introduced by hydrogenation, which partially suppress the dislocation nucleation around the surface steps, and no pyramid dislocation hillock is formed. Dislocation multiplication will dominate the subsequent plastic deformation. Moreover, as the H atom content increases to 0.4-0.5, the recoverable phase transition plays a key role in the plastic deformation. This study enriches our understanding of the impact of hydrogenation on the mechanical properties and deformation mechanisms of Pd nanoparticles.

13.
Nanotechnology ; 32(10): 105205, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33260165

ABSTRACT

Low temperature derived carbon electrodes are employed to fabricate low cost hole transport layer free perovskite solar cells, in which perovskite films annealed in glovebox and ambient air are used as the absorbers, respectively. Results suggest that the air annealed sample has bigger crystal grains and higher crystallinity, and the existence of a small amount of lead iodide which passivates grain boundaries contributes to a lower trap density. As a result, a maximum power conversion efficiency (PCE) of 13.07% was obtained on the air annealed device, which is higher than those of devices annealed in glovebox (11.25%). Furthermore, the stability of unencapsulated devices stored in wet (with humidity around 90% ± 5%) air atmosphere are investigated and the results prove that our devices exhibit good stability. In addition to rigid devices, flexible perovskite solar cells are also fabricated using the same procedure. The highest PCE of 11.53% is demonstrated on the champion flexible device, and 69% of its initial PCE can be maintained even after 2000 bending cycles with a bending radius of 2 mm. Our work provides a promising and simple rout for low-cost, air-stable, high-efficiency carbon perovskite solar cells for both large area production and flexible electronic devices industry.

14.
Math Biosci Eng ; 18(1): 712-726, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33525115

ABSTRACT

With the increasing complexity of modern engineering and wide application of intelligent manufacturing technology, the type and quantity of product data continue to climb, and the corresponding version iteration rate continues to accelerate. In order to achieve effective unified management and maintenance of product data and to track version evolution accurately, this paper proposes an improved polychromatic graphs-based BOM multi-view management and version control method for complex products. Firstly, the framework was established for BOM multi-view management and version control, whose mechanism was also elaborated. According to the model of multi-view-version product structure, the expression method of product structure was discussed at different stages of product life cycle. Furtherly, with multi-object constraints sets were introduced, a version control model was established based on the improved polychromatic graphs, whose definition and principle were also detailed. Finally, application cases were discussed to verify the feasibility and universality of the proposed models and methods.

15.
Sci Prog ; 103(1): 36850419874233, 2020.
Article in English | MEDLINE | ID: mdl-31829858

ABSTRACT

Blend features usually exist in the machining of complex multi-cavity parts; however, the ideal linear boundary of the cavity is shown as an arc curve at actual corner machining, which affects the accuracy of a robot's tool feed position. Focused on this problem, this article presents an automatic tool path planning approach based on blend feature simplification. By analyzing the geometric elements of blend feature, a line segment is constructed to obtain the machining boundary, while the robot tool feed position is accurately measured. On this basis, the coordinates of a robot tool feed position are assigned to the machining element, which can be used to calculate the spatial distance between different cavities. Then, an improved genetic algorithm is applied to improve the optimization of the tool path. The automatic decision of the corresponding work steps is realized by merging and sorting the machining elements. Finally, a corresponding prototype system is presented, with the correctness and validity of the proposed approach being examined, using aircraft structural part machining as an illustrative example.

16.
Micromachines (Basel) ; 10(1)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30654503

ABSTRACT

In traditional laser-based 3D measurement technology, the width of the laser stripe is uncontrollable and uneven. In addition, speckle noise in the image and the noise caused by mechanical movement may reduce the accuracy of the scanning results. This work proposes a new multiple laser stripe scanning profilometry (MLSSP) based on microelectromechanical systems (MEMS) scanning mirror which can project high quality movable laser stripe. It can implement full-field scanning in a short time and does not need to move the measured object or camera. Compared with the traditional laser stripe, the brightness, width and position of the new multiple laser stripes projected by MEMS scanning mirror can be controlled by programming. In addition, the new laser strip can generate high-quality images and the noise caused by mechanical movement is completely eliminated. The experimental results show that the speckle noise is less and the light intensity distribution is more even. Furthermore, the number of pictures needed to be captured is significantly reduced to 1 / N ( N is the number of multiple laser stripes projected by MEMS scanning mirror) and the measurement efficiency is increased by N times, improving the efficiency and accuracy of 3D measurement.

17.
J Biomech ; 80: 32-36, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30170840

ABSTRACT

Many soft biological tissues possess a considerable surface stress, which plays a significant role in their biophysical functions, but most previous methods for characterizing their mechanical properties have neglected the effects of surface stress. In this work, we investigate the micropipette aspiration method to measure the mechanical properties of soft tissues and cells with surface effects. The neo-Hookean constitutive model is adopted to describe the hyperelasticity of the measured biological material, and the surface effect is taken into account by the finite element method. It is found that when the pipette radius or aspiration length is comparable to the elastocapillary length, surface energy may distinctly alter the aspiration response. Generally, both the aspiration length and the bulk normal stress decrease with increasing surface energy, and thus neglecting the surface energy would lead to an overestimation of elastic modulus. Through dimensional analysis and numerical simulations, we provide an explicit relation between the imposed pressure and the aspiration length. This method can be applied to determine the mechanical properties of soft biological tissues and organs, e.g., livers, tumors and embryos.


Subject(s)
Elastic Modulus , Surface Properties , Biomechanical Phenomena , Computer Simulation , Finite Element Analysis , Humans , Liver/diagnostic imaging , Models, Biological , Neoplasms/diagnostic imaging , Pressure , Silicones , Specimen Handling , Stress, Mechanical , Surface Tension
18.
Soft Matter ; 14(36): 7534-7541, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30152838

ABSTRACT

Atomic force microscopy (AFM) has become the most commonly used tool to measure the mechanical properties of biological cells. In AFM indentation experiments, the Hertz and Sneddon models of contact mechanics are usually adopted to extract the elastic modulus by analyzing the load-indent depth curves for spherical and conical tips, respectively. However, the effects of surface tension, neglected in existing contact models, become more significant in indentation responses due to the lower elastic moduli of living cells. Here, we present two simple yet robust relations between load and indent depth considering surface tension effects for spherical and conical indentations, through dimensional analysis and finite element simulations. When the indent depth is smaller than the intrinsic length defined as the ratio of surface tension to elastic modulus, the elastic modulus obtained by classical contact mechanics theories would be overestimated. Contrary to the majority of reported results, we find that the elastic modulus of a cell could be independent of indent depths if surface tension is taken into account. Our model seems to be in agreement with experimental data available. A comprehensive comparison will be done in the future.


Subject(s)
Cells , Elastic Modulus , Finite Element Analysis , Surface Tension
19.
Plant J ; 92(5): 904-923, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28960566

ABSTRACT

Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis.


Subject(s)
Cell Wall/physiology , Oryza/physiology , Plant Epidermis/physiology , Plant Leaves/physiology , Plant Proteins/physiology , Cloning, Molecular , Dehydration/metabolism , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Epidermis/metabolism , Plant Proteins/metabolism , Proteostasis , Water/metabolism
20.
Sci Rep ; 7: 45575, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28368053

ABSTRACT

The atomic force microscopy (AFM) has been widely used to measure the mechanical properties of biological cells through indentations. In most of existing studies, the cell is supposed to be linear elastic within the small strain regime when analyzing the AFM indentation data. However, in experimental situations, the roles of large deformation and surface tension of cells should be taken into consideration. Here, we use the neo-Hookean model to describe the hyperelastic behavior of cells and investigate the influence of surface tension through finite element simulations. At large deformation, a correction factor, depending on the geometric ratio of indenter radius to cell radius, is introduced to modify the force-indent depth relation of classical Hertzian model. Moreover, when the indent depth is comparable with an intrinsic length defined as the ratio of surface tension to elastic modulus, the surface tension evidently affects the indentation response, indicating an overestimation of elastic modulus by the Hertzian model. The dimensionless-analysis-based theoretical predictions, which include both large deformation and surface tension, are in good agreement with our finite element simulation data. This study provides a novel method to more accurately measure the mechanical properties of biological cells and soft materials in AFM indentation experiments.


Subject(s)
Cells/chemistry , Elastic Modulus , Finite Element Analysis , Microscopy, Atomic Force/methods , Humans , Mechanical Phenomena , Models, Biological , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL