Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 7(1): 9539, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842663

ABSTRACT

In this article, we present a modified Velocity-Verlet algorithm that makes cluster system converge rapidly and accurately. By combining it with molecular dynamics simulations, we develop an effective global sampling method for extracting isomers of bimetallic clusters. Using this method, we obtain the isomers of icosahedral PdxAg13-x (x = 0-13). Additionally, using the first-principle spin-polarized density functional theory approach, we find that each isomer still retains its icosahedral structure because of strong s-d orbital hybridization, and the cluster is more stable when a Pd atom is at the center of the cluster. With increasing x value, the magnetic moment decreases linearly from 5.0 µB at x = 0, until reaching zero at x = 5, and then increases linearly up to 8.0 µB at x = 13. By calculating the atom-projected density of states (PDOS), we reveal that the magnetic moment of PdxAg13-x mainly originates from s electrons of Ag when 0 ≤ x < 5, and d electrons of Pd when 5 < x ≤ 13. The PDOS results also show that the PdxAg13-x tends to transform from a semiconductor state to semi-metallic state when x gradually increases from 0 to 13.

2.
Sci Rep ; 6: 37413, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27857182

ABSTRACT

Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the final energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.

3.
Nanoscale Res Lett ; 11(1): 318, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27356565

ABSTRACT

Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems.

4.
Phys Chem Chem Phys ; 18(16): 11550-5, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27063394

ABSTRACT

To solve the fundamental dilemma in data storage applications, it is crucial to manipulate the magnetic anisotropy energy (MAE). Herein, using first-principles calculations, we predict that the system of double-vacancy graphene decorated by iridium atoms possesses high stability, giant MAE, perpendicular-anisotropy and long-range ferromagnetic coupling. More importantly, the amplitude of MAE can be manipulated by electric fields. This is due to the change in the occupation number of Ir-5d orbitals. The present hybrid system could be a high-performance nanoscale information storage device with ultralow energy consumption.

5.
Sci Rep ; 6: 22948, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26954833

ABSTRACT

Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

6.
Sci Rep ; 5: 16843, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26574924

ABSTRACT

The quantum anomalous Hall effect (QAHE) is predicted to be realized at high temperature in a honeycomb bilayer consisting of Au atoms and single-vacancy graphene (Au2-SVG) based on the first-principles calculations. We demonstrate that the ferromagnetic state in the Au2-SVG can be maintained up to 380 K. The combination of spatial inversion symmetry and the strong SOC introduced by the Au atoms causes a topologically nontrivial band gap as large as 36 meV and a QAHE state with Chern number C = -2. The analysis of the binding energy proved that the honeycomb bilayer is stable and feasible to be fabricated in experiment. The QAHEs in Ta2-SVG and other TM2-SVGs are also discussed.

7.
Nanoscale Res Lett ; 10(1): 1021, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26239878

ABSTRACT

A hydrogen peroxide (H2O2) sensor based on Pd nanoparticles (NPs) and glassy carbon electrodes (GCEs) is fabricated. Pd NPs are deposited on GCEs by using a gas phase cluster beam deposition technique. The NP-deposited electrodes show enhanced electrocatalytic activity in reduction of H2O2. The electrode with an optimized NP coverage of 85 % has a high selective and stable nonenzymatic sensing ability of H2O2 with a low detection limit (3.4 × 10(-7) M), high sensitivity (50.9 µA mM(-1)), and a wide linear range (from 1.0 × 10(-6) to 6.0 × 10(-3) M). The reduction peak potential of the electrode is close to -0.12 V, which enables high selective amperometric detection of H2O2 at a low applied potential.

9.
Sci Rep ; 4: 7575, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25524662

ABSTRACT

Magnetic graphene-based materials have shown great potential for developing high-performance electronic devices at sub-nanometer such as spintronic data storage units. However, a significant reduction of power consumption and great improvement of structural stability are needed before they can be used for actual applications. Based on the first-principles calculations, here we demonstrate that the interaction between tungsten atoms and nitrogenized-divacancies (NDVs) in the hybrid W@NDV-graphene can lead to high stability and large magnetic anisotropy energy (MAE). More importantly, reversible switching between different magnetic states can be implemented by tuning the MAE under different electric fields, and very low energy is consumed during the switching. Such controllable switching of magnetic states is ascribed to the competition between the tensile stain and orbital magnetic anisotropy, which originates from the change in the occupation number of W-5d orbitals under the electric fields. Our results provide a promising avenue for developing high-density magnetic storage units or multi-state logical switching devices with ultralow power at sub-nanometer.

10.
J Chem Phys ; 139(17): 174309, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24206300

ABSTRACT

We theoretically predict magnetic superatoms in the 4d-transition-metal-doped Mg8 clusters using a spin-polarized density functional theory method. We demonstrate that TcMg8 is highly energetically stable in both structure and magnetic states, and identify it as a magnetic superatom with a magnetic moment as large as 5 µB. The magnetic TcMg8 with 23 valence electrons has a configuration of 1S(2)1P(6)1D(10) closed shell and 2S(1)2D(4) open shell, complying with Hund's rule similar to the single atom. We elucidate the formation mechanism of the magnetic TcMg8 superatom based on the detailed analysis of molecular orbitals, and attribute it to the large exchange interaction and moderate crystal field effect. Finally, we predict that the magnetic TcMg8 may exhibit semiconductor-like property with spin polarization characteristics.

11.
Nanotechnology ; 24(22): 225702, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23637078

ABSTRACT

Local electrical conduction behaviors of polycrystalline La-doped BiFeO3 thin films have been investigated by combining conductive atomic force microscopy and piezoelectric force microscopy. Nanoscale current measurements were performed as a function of bias voltage for different crystal grains. Completely distinct conducting processes and resistive switching effects were observed in the grain boundary and grain interior. We have revealed that local electric conduction in a grain is dominated by both the grain boundary and ferroelectric domain, and is closely related to the applied electric field and the as-grown state of the grain. At lower voltages the electrical conduction is dominated by the grain boundary and is associated with the redistribution of oxygen vacancies in the grain boundary under external electric fields. At higher voltages both the grain boundary and ferroelectric domain are responsible for the electrical conduction of grains, and the electrical conduction gradually extends from the grain boundary into the grain interior due to the extension of the ferroelectric domain towards the grain interior. We have also demonstrated that the conduction dominated by the grain boundary exhibits a much small switching voltage, while the conduction of the ferroelectric domain causes a much high switching voltage in the grain interior.

12.
J Pharm Anal ; 1(4): 270-274, 2011 Nov.
Article in English | MEDLINE | ID: mdl-29403709

ABSTRACT

The present study was aimed at the comparison of the pharmacokinetics of pure chlorogenic acid and extract of Solanum lyratum Thunb. The animals were allocated to two groups, and were administered chlorogenic acid or extract of S. lyratum Thunb. at a dose of 50.0 mg/kg orally. Blood samples were collected up to 8 h post-dosing. Plasma chlorogenic acid analyses were performed using an HPLC method with UV detector. The pharmacokinetic parameters were evaluated using non-compartmental assessment. Significant differences existed in the two groups for AUC0-t , AUC0-∞ and CLz/F. The reliable HPLC method was successfully applied to the determination of chlorogenic acid in rat plasma at dosage of 50.0 mg/kg.

13.
J Comput Chem ; 31(15): 2804-9, 2010 Nov 30.
Article in English | MEDLINE | ID: mdl-20839305

ABSTRACT

The interaction of O(2) with the doped icosahedral X@Al(12) (X = Al(-), P(+), C, Si) clusters with 40 valence electrons were investigated using density functional theory methods. A different behavior exhibited between Al(13)(-) and X@Al(12) (X = P(+), C, Si) when they interact with O(2). The dissociation of O(2) on Al(13)(-) is strongly dependent on spin state of oxygen molecule. But X@Al(12) (X = P(+), C, and Si) is not the case. The transform of spin moment from O(2) to Al(13)(-) is much faster. Small molecularly binding energy and relatively high energy barrier show that these clusters are all reluctant reacts with the ground state O(2).

14.
J Chem Phys ; 130(16): 164514, 2009 Apr 28.
Article in English | MEDLINE | ID: mdl-19405601

ABSTRACT

The structure, electronic, magnetic properties of Si(n)Mn clusters up to n=15 are systematically investigated using the density functional theory within the generalized gradient approximation. In the most stable configurations of Si(n)Mn clusters, the equilibrium site of Mn atom gradually moves from convex, to a surface, and to a concave site as the number of Si atoms varying from 1 to 15. Starting from n=11, the Mn atom completely falls into the center of the Si outer frame, forming Mn-encapsulated Si cages. Maximum peaks of second-order energy difference are found at n=6, 8, 10, and 12, indicating that these clusters possess relatively higher stability. The electronic structures and magnetic properties of Si(n)Mn clusters are discussed. The magnetic moment of Si(n)Mn clusters mainly is located on Mn atom. The 3d electrons in Mn atom play a dominant role in the determination of the magnetism of Mn atom in Si(n)Mn clusters. Furthermore, the moment of Mn atom in Si(n)Mn clusters exhibits oscillatory behavior and are quenched at n>7 except for n=12, mainly due to the charge transfer, strong hybridization between Mn 4s, 3d, 4p and Si 3s, 3p states.

15.
Yao Xue Xue Bao ; 43(1): 81-5, 2008 Jan.
Article in Chinese | MEDLINE | ID: mdl-18357738

ABSTRACT

To study the tissue distribution and excretion of indomethacin 5-fluorouracil-1-ylmethyl ester (IFM) metabolite 5-fluorouracil in rats, an accurate and specific high performance liquid chromatography method for quantifying IFM in rat plasma and tissues was developed. Biological samples were prepared by liquid-liquid extraction and separated on a Diamonsil C18 column (250 mm x 4.6 mm ID, 5 microm). The mobile phase for tissue samples, plasma samples and feces samples were composed of methanol-water-36% acetic acid (3:96.9:0.1, v/v) and the mobile phase for urine samples was a mixture of methanol-water-36% acetic acid (10:89.9:0.1, v/v). The eluate was monitored by UV absorbance at 260 nm. After a single ig dose of 100 mg x kg(-1) IFM in rats, 5-Fu was mainly distributed in stomach, small intestine, and liver. The concentrations of 5-fluorouracil in other tissues and plasma were low. The excretion of 5-Fu in urine and feces amounted to 0.0065% and 0.063% of the dose, respectively. The method is shown to be accurate and specific, and suitable for preclinical pharmacokinetic studies of IFM.


Subject(s)
Fluorouracil/pharmacokinetics , Indomethacin/metabolism , Prodrugs/pharmacokinetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/urine , Antimetabolites, Antineoplastic/pharmacokinetics , Antimetabolites, Antineoplastic/urine , Feces/chemistry , Female , Fluorouracil/urine , Indomethacin/pharmacokinetics , Indomethacin/urine , Male , Random Allocation , Rats , Rats, Wistar , Sensitivity and Specificity , Tissue Distribution
16.
J Phys Chem A ; 110(23): 7453-60, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16759135

ABSTRACT

The equilibrium geometries, stabilities, and electronic properties of the TaSi(n)+ (n = 1-13, 16) clusters are investigated systematically by using the relativistic density functional method with generalized gradient approximation. The small-sized TaSi(n)+ clusters with slight geometrical adjustments basically keep the frameworks that are analogous to the neutrals while the medium-sized charged clusters significantly deform the neutral geometries, which are confirmed by the calculated AIP and VIP values. Furthermore, the optimized geometries of the charged clusters agree with the experimental results of Hiura and co-workers (Hiura, H.; Miyazaki, T.; Kanayama, T. Phys. Rev. Lett. 2001, 86, 1733). The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gaps of the charged clusters are generally increased as the cluster size goes from n = 1 to 13; and the large HOMO-LUMO gaps of charged clusters resulting from the positive charge indicate that their chemical stabilities are stronger than their neutral counterparts, especially for n = 4, 6, and 7 clusters. Additionally, the contributions of the d orbitals of the Ta atom to the HOMO and LUMO reveal that the chemical activity of the d orbitals of the Ta atom decreases gradually as the number of silicon atoms increases. This interesting finding is in good agreement with the recent experimental results on the reactive activities of the H2O and transition-metal silicon clusters (Koyasu, K.; Akutsu, M.; Mitsui, M.; Nakajima, A. J. Am. Chem. Soc. 2005, 127, 4998). Generally, the positive charge significantly influences the electronic and geometric structures of the charged clusters. Finally, the most stable neutral and charged TaSi16 clusters are found to be fullerene-like structures and the HOMO-LUMO gap in charged form is detectable experimentally.

17.
J Chem Phys ; 121(24): 12265-75, 2004 Dec 22.
Article in English | MEDLINE | ID: mdl-15606244

ABSTRACT

The TaSi(n) (n=1-13) clusters with doublet, quartet, and sextet spin configurations have been systematically investigated by a relativistic density functional theory with the generalized gradient approximation available in Amsterdam density functional program. The total bonding energies, equilibrium geometries, Mulliken populations as well as Hirshfeld charges of TaSi(n) (n=1-13) clusters are calculated and presented. The emphasis on the stabilities and electronic properties is discussed. The most stable structures of the small TaSi(n) (n=1-6) clusters and the evolutional rule of low-lying geometries of the larger TaSi(n) (n=7-13) clusters are obtained. Theoretical results indicate that the most stable structure of TaSi(n) (n=1-6) clusters keeps the similar framework as the most stable structure of Si(n+1) clusters except for TaSi(3) cluster. The Ta atom in the lowest-energy TaSi(n) (n=1-13) isomers occupies a gradual sinking site, and the site moves from convex, to flatness, and to concave with the number of Si atom varying from 1 to 13. When n=12, the Ta atom in TaSi(12) cluster completely falls into the center of the Si frame, and a cagelike TaSi(12) geometry is formed. Meanwhile, the net Mulliken and Hirsheld populations of the Ta atom in the TaSi(n) (n=1-13) clusters vary from positive to negative, manifesting that the charges in TaSi(n) (n>/=12) clusters transfer from Si atoms to Ta atom. Additionally, the contribution of Si-Si and Si-Ta interactions to the stability of TaSi(n) clusters is briefly discussed. Furthermore, the investigations on atomic averaged binding energies and fragmentation energies show that the TaSi(n) (n=2,3,5,7,10,11,12) clusters have enhanced stabilities. Compared with pure silicon clusters, a universal narrowing of highest occupied molecular orbital-lowest unoccupied molecular orbital gap in TaSi(n) clusters is found.

18.
Chaos ; 4(1): 85-88, 1994 Mar.
Article in English | MEDLINE | ID: mdl-12780089

ABSTRACT

Channeling describes the collimated motion of energetic charged particles along the lattice plane or axis in a crystal. The energetic particles are steered through the channels formed by strings of atomic constituents in the lattice. In the case of planar channeling, the motion of a charged particle between the atomic planes can be periodic or quasiperiodic, such as a simple oscillatory motion in the transverse direction. In practice, however, the periodic motion of the channeling particles can be accompanied by an irregular, chaotic behavior. In this paper, the Moliere potential, which is considered as a good analytical approximation for the interaction of channeling particles with the rows of atoms in the lattice, is used to simulate the channeling behavior of positively charged particles in a tungsten (100) crystal plane. By appropriate selection of channeling parameters, such as the projectile energy E(0) and incident angle psi(0), the transition of channeling particles from regular to chaotic motion is demonstrated. It is argued that the fine structures that appear in the angular scan channeling experiments are due to the particles' chaotic motion.

SELECTION OF CITATIONS
SEARCH DETAIL
...